Skip to main content

WNT Signaling Is a Key Player in Alzheimer’s Disease

  • Chapter
  • First Online:
Pharmacology of the WNT Signaling System

Abstract

The cellular processes regulated by WNT signaling have been mainly studied during embryonic development and cancer. In the last two decades, the role of WNT in the adult central nervous system has been the focus of interest in our laboratory. In this chapter, we will be summarized β-catenin-dependent and -independent WNT pathways, then we will be revised WNT signaling function at the pre- and post-synaptic level. Concerning Alzheimer’s disease (AD) initially, we found that WNT/β-catenin signaling activation exerts a neuroprotective mechanism against the amyloid β (Αβ) peptide toxicity. Later, we found that WNT/β-catenin participates in Tau phosphorylation and in learning and memory. In the last years, we demonstrated that WNT/β-catenin signaling is instrumental in the amyloid precursor protein (APP) processing and that WNT/β-catenin dysfunction results in Aβ production and aggregation. We highlight the importance of WNT/β-catenin signaling dysfunction in the onset of AD and propose that the loss of WNT/β-catenin signaling is a triggering factor of AD. The WNT pathway is therefore positioned as a therapeutic target for AD and could be a valid concept for improving AD therapy. We think that metabolism and inflammation will be relevant when defining future research in the context of WNT signaling and the neurodegeneration associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acebron SP, Niehrs C (2016) β-Catenin-independent roles of Wnt/LRP6 signaling. Trends Cell Biol 26:956–967

    Article  CAS  PubMed  Google Scholar 

  • Acuña C, Liu X, Südhof TC (2016) How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron 91:792–807

    Article  PubMed  CAS  Google Scholar 

  • Ahmad-Annuar A, Ciani L, Simeonidis I et al (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander SPH, Christopoulos A, Davenport AP et al (2019) The concise guide to pharmacology 2019/20: G protein-coupled receptors. Br J Pharmacol 176(Suppl 1):S21–S141

    PubMed  PubMed Central  Google Scholar 

  • Alfaro IE, Varela-Nallar L, Varas-Godoy M, Inestrosa NC (2015) The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons. Mol Cell Neurosci 67:22–30

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AR, Godoy JA, Mullendorff K et al (2004) Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 297:186–196

    Article  CAS  PubMed  Google Scholar 

  • Andreasson KI, Bachstetter AD, Colonna M et al (2016) Targetin innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 138:653–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrazola MS, Varela-Nallar L, Colombres M et al (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J Cell Physiol 221:658–667

    Article  CAS  PubMed  Google Scholar 

  • Arredondo SB, Guerrero FG, Herrera-Soto A et al (2020) Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells 38:422–436

    Article  CAS  PubMed  Google Scholar 

  • Atmaca HT, Kul O, Karakus E et al (2014) Astrocytes, microglia/macrophages, and neurons expressing toll-like receptor 11 contribute to innate immunity against encephalitic Toxoplasma gondii infection. Neuroscience 269:184–191

    Article  CAS  PubMed  Google Scholar 

  • Baki L, Shioi J, Wen P et al (2004) PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J 23:2586–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buechler J, Salinas PC (2018) Deficient Wnt signaling and synaptic vulnerability in Alzheimer’s disease: emerging roles for the LRP6 receptor. Front Synaptic Neurosci 10:1–10

    Article  CAS  Google Scholar 

  • Caricasole A, Copani A, Caraci F et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24:6021–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso A, Motolese M, Iacovelli L et al (2006) Inhibition of the canonical Wnt signaling pathway by apolipoprotein E4 in PC12 cells. J Neurochem 98:364–371

    Article  CAS  PubMed  Google Scholar 

  • Castillo PE (2012) Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb Perspect Biol 4:a005728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerpa W, Godoy JA, Alfaro I et al (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283:5918–5927

    Article  CAS  PubMed  Google Scholar 

  • Cerpa W, Farías GG, Godoy JA et al (2010) Wnt-5a occludes Aβ oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31:9466–9471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerpa W, Latorre-Esteves E, Barria A (2015) RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proc Natl Acad Sci U S A 112:4797–4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerpa W, Ramos-Fernández E, Inestrosa NC (2016) Modulation of the NMDA receptor through secreted soluble factors. Mol Neurobiol 53:299–309

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Park CS, Tang S-J (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281:11910–11916

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Salinas PC (2005) WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 6:351–362

    Article  CAS  PubMed  Google Scholar 

  • Ciani L, Boyle KA, Dickins E et al (2011) Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca 2+/Calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 108:10732–10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciani L, Marzo A, Boyle K et al (2015) Wnt signalling tunes neurotransmitter release by directly targeting Synaptotagmin-1. Nat Commun 6:1–13

    Article  CAS  Google Scholar 

  • Cisternas P, Salazar P, Silva-Álvarez C et al (2016a) Wnt5a increases the glycolytic rate and the activity of the pentose phosphate pathway in cortical neurons. Neural Plast 2016:9839348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cisternas P, Salazar P, Silva-Álvarez C et al (2016b) Activation of Wnt signaling in cortical neurons enhances glucose utilization through glycolysis. J Biol Chem 291:25950–25964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisternas P, Zolezzi J, Martinez M et al (2018a) Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J Neurochem 149:54–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cisternas P, Zolezzi JM, Lindsay C et al (2018b) New insights into the spontaneous human Alzheimer’s disease-like model Octodon degus: unraveling amyloid-b peptide aggregation and age-related amyloid pathology. J Alzheimers Dis 66:1145–1163

    Article  CAS  PubMed  Google Scholar 

  • Cisternas P, Oliva CA, Torres VI et al (2019) Presymptomatic treatment with andrographolide improves brain metabolic markers and cognitive behavior in a model of early-onset Alzheimer’s disease. Front Cell Neurosci 13:1–18

    Article  CAS  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Cordero Cervantes D, Zurzolo C (2021) Peering into tunneling nanotubes - the path forward. EMBO J 40:e105789

    Article  CAS  PubMed  Google Scholar 

  • Cuitino L, Godoy JA, Farías GG et al (2010) Wnt-5a modulates recycling of functional GABAA receptors on hippocampal neurons. J Neurosci 30:8411–8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin Shanghai 43:745–756

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev 33:1–12

    Article  PubMed  Google Scholar 

  • De Ferrari GV, Chacón MA, Barría MI et al (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by β-amyloid fibrils. Mol Psychiatry 8:195–208

    Article  PubMed  CAS  Google Scholar 

  • De Ferrari GV, Papassotiropoulos A, Biechele T et al (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci U S A 104:9434–9439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dickins EM, Salinas PC (2013) Wnts in action: from synapse formation to synaptic maintenance. Front Cell Neurosci 7:1–11

    Article  CAS  Google Scholar 

  • Elliott C, Rojo AI, Ribe E et al (2018) A role for APP in Wnt signalling links synapse loss with β-amyloid production. Transl Psychiatry 8:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Endo M, Minami Y (2018) Diverse roles for the ror-family receptor tyrosine kinases in neurons and glial cells during development and repair of the nervous system. Dev Dyn 247:24–32

    Article  CAS  PubMed  Google Scholar 

  • Engel T, Goni-Oliver P, Lucas JJ et al (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Famili F, Naber BA, Vloemans S et al (2015) Discrete roles of canonical and non-canonical Wnt signaling in hematopoiesis and lymphopoiesis. Cell Death Dis 6:e1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias GG, Valles AS, Colombres M et al (2007) Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons. J Neurosci 27:5313–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farías GG, Alfaro IE, Cerpa W et al (2009) Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 284:15857–15866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiedler M, Mendoza-Topaz C, Rutherford TJ et al (2011) Dishevelled interacts with the DIX domain polymerization interface of Axin to interfere with its function in down-regulating β-catenin. Proc Natl Acad Sci U S A 108:1937–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folke J, Pakkenberg B, Brudek T (2018) Impaired Wnt signaling in the prefrontal cortex of Alzheimer’s disease. Mol Neurobiol 56:873–891

    Article  PubMed  CAS  Google Scholar 

  • Forlenza OV, de Paula VJ, Machado-Vieira R et al (2012) Does lithium prevent Alzheimer’s disease? Drugs Aging 29:335–342

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727

    Article  CAS  PubMed  Google Scholar 

  • García-Velázquez L, Arias C (2017) The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 37:135–145

    Article  PubMed  CAS  Google Scholar 

  • Gherardelli C, Cisternas P, Gutiérrez J et al (2021) Andrographolide restores glucose uptake in rat hippocampal neurons. J Neurochem 157(4):1222–1233

    Article  CAS  PubMed  Google Scholar 

  • Gordon MD, Nusse R (2006) Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433

    Article  CAS  PubMed  Google Scholar 

  • Green J, Nusse R, van Amerongen R (2014) The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol 6:a009175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grumolato L, Liu G, Mong P et al (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24:2517–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  CAS  PubMed  Google Scholar 

  • Halleskog C, Schulte G (2013a) WNT-3A and WNT-5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J Neurochem 125:803–808

    Article  CAS  PubMed  Google Scholar 

  • Halleskog C, Schulte G (2013b) Pertussis toxin-sensitive heterotrimeric G(αi/o) proteins mediate WNT/β-catenin and WNT/ERK1/2 signaling in mouse primary microglia stimulated with purified WNT-3A. Cell Signal 25:822–828

    Article  CAS  PubMed  Google Scholar 

  • Halleskog C, Mulder J, Dahlström J et al (2011) WNT signaling in activated microglia is proinflammatory. Glia 59:119–131

    Article  PubMed  Google Scholar 

  • Halleskog C, Dijksterhuis JP, Kilander MB et al (2012) Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation 9:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanzadeh Z, Nourazarian A, Nikanfar M et al (2021) Evaluation of the serum Dkk-1, tenascin-C, oxidative stress markers levels and Wnt signaling pathway genes expression in patients with Alzheimer’s disease. J Mol Neurosci 71:879–887

    Article  CAS  PubMed  Google Scholar 

  • He F, Xiong W, Yu X et al (2008) Wnt5a regulates directional cell migration and cell proliferation via Ror2-mediated noncanonical pathway in mammalian palate development. Development 135:3871–3879

    Article  CAS  PubMed  Google Scholar 

  • Herr P, Basler K (2012) Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol 361:392–402

    Article  CAS  PubMed  Google Scholar 

  • Hödar C, Assar R, Colombres M et al (2010) Genome-wide identification of new Wnt/β-catenin target genes in the human genome using CART method. BMC Genomics 11:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11:77–86

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Toledo EM (2008) The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease. Mol Neurodegener 3:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74

    Article  PubMed  Google Scholar 

  • Inestrosa NC, Varela-Nallar L (2015) Wnt signalling in neuronal differentiation and development. Cell Tissue Res 359:215–223

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Alvarez A, Godoy J et al (2000) Acetylcholinesterase-amyloid-beta-peptide interaction and Wnt signaling involvement in Abeta neurotoxicity. Acta Neurol Scand Suppl 176:53–59

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Reyes AE, Chacón MA et al (2005) Human-like rodent amyloid-β-peptide determines Alzheimer pathology in aged wild-type Octodon degus. Neurobiol Aging 26:1023–1028

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Ríos JA, Cisternas P et al (2015) Age progression of neuropathological markers in the brain of the Chilean rodent Octodon degus, a natural model of Alzheimer’s disease. Brain Pathol 25:679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inestrosa NC, Tapia-Rojas C, Lindsay CB, Zolezzi JM (2020) Wnt signaling pathway dysregulation in the aging brain: lessons from the Octodon degus. Front Cell Dev Biol 8:1–15

    Article  Google Scholar 

  • Jia L, Piña-Crespo J, Li Y (2019) Restoring Wnt/bcatenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain 12:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin N, Zhu H, Liang X et al (2017) Sodium selenate activated Wnt/beta-catenin signaling and repressed amyloid-beta formation in a triple transgenic mouse model of Alzheimer’s disease. Exp Neurol 297:36–49

    Article  CAS  PubMed  Google Scholar 

  • Jridi I, Canté-Barrett K, Pike-Overzet K, Staal FJT (2020) Inflammation and Wnt signaling: target for immunomodulatory therapy? Front Cell Dev Biol 8:615131

    Article  PubMed  Google Scholar 

  • Kajino-Sakamoto R, Fujishita T, Taketo MM, Aoki M (2020) Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells. Oncogene 40:408–420

    Article  PubMed  CAS  Google Scholar 

  • Killick R, Ribe EM, Al-Shawi R et al (2014) Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the Wnt-PCP-JNK pathway. Mol Psychiatry 19:88–98

    Article  CAS  PubMed  Google Scholar 

  • Kohn AD, Moon RT (2005) Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 38:439–446

    Article  CAS  PubMed  Google Scholar 

  • Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55

    Article  CAS  PubMed  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  • Lesné S, Sherman M, Grant M et al (2013) Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136:1383–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Selkoe DJ (2020) A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J Neurochem 154:583–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xing Q, Wei Y (2019) Activation of RXR by bexarotene inhibits inflammatory conditions in human rheumatoid arthritis fibroblast-like synoviocytes. Int J Mol Med 44:1963–1970

    CAS  PubMed  Google Scholar 

  • Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Tsai CW, Deak F et al (2014) Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron 84:63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Lucas FR, Salinas PC (1997) WNT-7a induces axonal remodeling and increases synapsin I levels in cerebellar neurons. Dev Biol 192:31–44

    Article  CAS  PubMed  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez-Ramos P et al (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luis TC, Naber BA, Fibbe WE et al (2010) Wnt3a nonredundantly controls hematopoietic stem cell function and its deficiency results in complete absence of canonical Wnt signaling. Blood 116:496–497

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Hottiger MO (2016) Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol 7:378

    Article  PubMed  PubMed Central  Google Scholar 

  • Malhotra S, Baba Y, Garrett KP, Staal FJ et al (2008) Contrasting responses of lymphoid progenitors to canonical and noncanonical Wnt signals. J Immunol 181:3955–3964

    Article  CAS  PubMed  Google Scholar 

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchetti B, Pluchino S (2013) Wnt your brain be inflamed? Yes, it Wnt! Trends Mol Med 19:144–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardones MD, Andaur GA et al (2016) Frizzled-1 receptor regulates adult hippocampal neurogenesis. Mol Brain 9:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez M, Torres VI, Vio CP, Inestrosa NC (2020) Canonical Wnt signaling modulates the expression of pre- and postsynaptic components in different temporal patterns. Mol Neurobiol 57:1389–1404

    Article  CAS  PubMed  Google Scholar 

  • Marzo A, Galli S, Lopes D et al (2016) Reversal of synapse degeneration by restoring Wnt signaling in the adult hippocampus. Curr Biol 26:2551–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo I, Infante J, Llorca J et al (2006) Association between glycogen synthase kinase-3beta genetic polymorphism and late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 21:228–232

    Article  CAS  PubMed  Google Scholar 

  • McLeod F, Salinas PC (2018) Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 53:90–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLeod F, Bossio A, Marzo A et al (2018) Wnt signaling mediates LTP-dependent spine plasticity and AMPAR localization through Frizzled-7 receptors. Cell Rep 23:1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McQuate A, Latorre-Esteves E, Barria A (2017) A Wnt/calcium signaling cascade regulates neuronal excitability and trafficking of NMDARs. Cell Rep 21:60–69

    Article  CAS  PubMed  Google Scholar 

  • Menet R, Bourassa P, Calon F, ElAli A (2020) Dickkopf-related protein-1 inhibition attenuates amyloid-beta pathology associated to Alzheimer’s disease. Neurochem Int 141:104881

    Article  CAS  PubMed  Google Scholar 

  • Metcalfe C, Bienz M (2011) Inhibition of GSK3 by Wnt signaling – two contrasting models. J Cell Sci 124:3537–3544

    Article  CAS  PubMed  Google Scholar 

  • Mikels AJ, Nusse R (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25:7461–7468

    Article  CAS  PubMed  Google Scholar 

  • Mishra BB, Mishra PK, Teale JM (2006) Expression and distribution of toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol 181:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misztal K, Wisniewska MB, Ambrozkiewicz M et al (2011) WNT protein-independent constitutive nuclear localization of β-catenin protein and its low degradation rate in thalamic neurons. J Biol Chem 286:31781–31788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montcouquiol M, Crenshaw EB, Kelley MW (2006) Noncanonical Wnt signaling and neural polarity. Annu Rev Neurosci 29:363–386

    Article  CAS  PubMed  Google Scholar 

  • Montecinos-Oliva C, Arrázola MS, Jara C et al (2020) Hormetic-like effects of L-homocysteine on synaptic structure, function, and Aβ aggregation. Pharmaceuticals (Basel) 13:24

    Article  CAS  Google Scholar 

  • Munoz FJ, Godoy JA, Cerpa W et al (2014) Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochem Biophys Res Commun 444:189–194

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka T, Ohashi R, Inutsuka A et al (2014) The Wnt/planar cell polarity pathway component Vangl2 induces synapse formation through direct control of N-cadherin. Cell Rep 6:916–927

    Article  CAS  PubMed  Google Scholar 

  • Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999

    Article  CAS  PubMed  Google Scholar 

  • Oliva CA, Inestrosa NC (2015) A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal-hippocampal circuit. Exp Neurol 269:43–55

    Article  CAS  PubMed  Google Scholar 

  • Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:1–16

    Article  CAS  Google Scholar 

  • Oliva CA, Montecinos-Oliva C, Inestrosa NC (2018) Wnt signaling in the central nervous system: new insights in health and disease. Prog Mol Biol Transl Sci 153:81–130

    Article  CAS  PubMed  Google Scholar 

  • Palomer E, Buechler J, Salinas PC (2019) Wnt signaling deregulation in the aging and Alzheimer’s brain. Front Cell Neurosci 13:1–8

    Article  CAS  Google Scholar 

  • Parr C, Mirzaei N, Christian M, Sastre M (2015) Activation of the Wnt/β-catenin pathway represses the transcription of the β-amyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter. FASEB J 29:623–635

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Palma E, Andrade V, Caracci MO et al (2016) Early transcriptional changes induced by Wnt/ β -catenin signaling in hippocampal neurons. Neural Plast 2016:4672841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Purro SA, Dickins EM, Salinas PC (2012) The secreted Wnt antagonist dickkopf-1 is required for amyloid -mediated synaptic loss. J Neurosci 32:3492–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez VT, Ramos-Fernández E, Henríquez JP et al (2016) Wnt-5a/frizzled9 receptor signaling through the Gαo-Gβγ complex regulates dendritic spine formation. J Biol Chem 291:19092–19107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramos-Fernández E, Tapia-Rojas C, Ramírez VT, Inestrosa NC (2019) Wnt-7a stimulates dendritic spine morphogenesis and PSD-95 expression through canonical signaling. Mol Neurobiol 56:1870–1882

    Article  PubMed  CAS  Google Scholar 

  • Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J Neurosci 29:11982–11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riise J, Plath N, Pakkenberg B, Parachikova A (2015) Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer’s disease. J Neural Transm 122:1303–1318

    Article  CAS  PubMed  Google Scholar 

  • Rivera DS, Lindsay C, Codocedo JF et al (2016) Andrographolide recovers cognitive impairment in a natural model of Alzheimer’s disease (Octodon degus). Neurobiol Aging 46:204–220

    Article  CAS  PubMed  Google Scholar 

  • Rosi MC, Luccarini I, Grossi C et al (2010) Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem 112:1539–1551

    Article  CAS  PubMed  Google Scholar 

  • Sahores M, Gibb A, Salinas PC (2010) Frizzled-5, a receptor for the synaptic organizer Wnt7a, regulates activity-mediated synaptogenesis. Development 137:2215–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scali C, Caraci F, Gianfriddo M et al (2006) Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol Dis 24:254–265

    Article  CAS  PubMed  Google Scholar 

  • Schulte G, Wright SC (2018) Frizzleds as GPCRs – more conventional than we thought! Trends Pharmacol Sci 39:828–842

    Article  CAS  PubMed  Google Scholar 

  • Seifert JRK, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8:126–138

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Sellers KJ, Elliott C, Jackson J et al (2018) Amyloid β synaptotoxicity is Wnt-PCP dependent and blocked by fasudil. Alzheimers Dement 14:306–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano FG, Tapia-Rojas C, Carvajal FJ et al (2014) Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener 9:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shankar GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Abeta. Mol Neurodegener 4:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slater PG, Ramirez VT, Gonzalez-Billault C et al (2013) Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons. PLoS One 8:e78892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slusarski DC, Pelegri F (2007) Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 307:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slusarski DC, Corces VG, Moon RT et al (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390:410–413

    Article  CAS  PubMed  Google Scholar 

  • Speese S, Budnik V (2007) Wnts: up-and-coming at the synapse. Trends Neurosci 30:268–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabatadze N, Tomas C, McGonigal R et al (2012) Wnt transmembrane signaling and long-term spatial memory. Hippocampus 22:1228–1241

    Article  CAS  PubMed  Google Scholar 

  • Takashima A, Murayama M, Murayama O et al (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci U S A 95:9637–9641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia-Rojas C, Inestrosa NC (2018a) Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer’s disease in J20-APP transgenic and wild-type mice. J Neurochem 144:443–465

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Rojas C, Inestrosa NC (2018b) Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer’s disease. Neural Regen Res 13:1705–1710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tapia-Rojas C, Lindsay CB, Montecinos-Oliva C et al (2015) Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: changes in Abeta oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener 10:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tapia-Rojas C, Burgos PV, Inestrosa NC (2016) Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-β (Aβ)42peptides. J Neurochem 139:1175–1191

    Article  CAS  PubMed  Google Scholar 

  • Tauriello DVF, Jordens I, Kirchner K et al (2012) Wnt/-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci U S A 109:E812–E820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry R, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  • Thakar S, Wang L, Yu T (2017) Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc Natl Acad Sci U S A 114:E610–E618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15:272–285

    Article  CAS  PubMed  Google Scholar 

  • Torres VI, Godoy JA, Inestrosa NC (2019) Modulating Wnt signaling at the root: porcupine and Wnt acylation. Pharmacol Ther 198:34–45

    Article  CAS  PubMed  Google Scholar 

  • Tsai SY, Catts VS, Fullerton JM (2018) Nuclear receptors and neuroinflammation in schizophrenia. Mol Neuropsychiatry 3:181–191

    PubMed  PubMed Central  CAS  Google Scholar 

  • Van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  PubMed  CAS  Google Scholar 

  • Varela-Nallar L, Grabowski CP, Alfaro IE et al (2009) Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev 4:1–15

    Article  CAS  Google Scholar 

  • Varela-Nallar L, Alfaro IE, Serrano FG (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci U S A 107:21164–21169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varela-Nallar L, Ramirez VT, Gonzalez-Billault C, Inestrosa NC (2012) Frizzled receptors in neurons: from growth cones to the synapse. Cytoskeleton (Hoboken) 69:528–534

    Article  CAS  Google Scholar 

  • Vargas JY, Fuenzalida M, Inestrosa NC (2014) In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer’s disease model. J Neurosci 34:2191–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas JY, Ahumada J, Arrazola MS et al (2015) WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Abeta oligomers. Exp Neurol 264:14–25

    Article  CAS  PubMed  Google Scholar 

  • Vargas JY, Loria F, Wu Y-J et al (2019) The Wnt/Ca2+ pathway is involved in interneuronal communication mediated by tunneling nanotubes. EMBO J 38:e101230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Nakashima KI, Hirai T, Inoue M (2019) Anti-inflammatory effects of naturally occurring retinoid X receptor agonists isolated from Sophora tonkinensis Gagnep. via retinoid X receptor/liver X receptor heterodimers. J Nat Med 73:419–430

    Article  CAS  PubMed  Google Scholar 

  • Wisniewska MB, Misztal K, Michowski W et al (2010) LEF1/ -catenin complex regulates transcription of the Cav3.1 calcium channel gene (Cacna1g) in thalamic neurons of the adult brain. J Neurosci 30:4957–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisniewska MB, Nagalski A, Dabrowski M et al (2012) Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability. BMC Genomics 13:1–17

    Article  CAS  Google Scholar 

  • Zhang Z, Hartmann H, Do VM et al (1998) Destabilization of β-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395:698–702

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Jia L, Liu CC et al (2017) TREM2 promotes microglial survival by activating wnt/β-catenin pathway. J Neurosci 37:1772–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Chen D, Huang XM et al (2017) Wnt5a promotes cortical neuron survival by inhibiting cell-cycle activation. Front Cell Neurosci 11:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolezzi JM, Inestrosa NC (2017) Wnt/TLR dialog in neuroinflammation, relevance in Alzheimer’s disease. Front Immunol 8:187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration AFB 170005-ANID and the grant “Lithium in Health and Disease” from Sociedad Química y Minera de Chile S.A. (SQM) to NCI.

Author Contributions

NCI contributed to the conception of the review. CT, WC, PC, JZ, and NCI contributed to the writing of the manuscript. NCI edits the final draft of the manuscript.

Competing Interests

The authors have no conflicts of interest related to this study to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nibaldo C. Inestrosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inestrosa, N.C., Tapia-Rojas, C., Cerpa, W., Cisternas, P., Zolezzi, J.M. (2021). WNT Signaling Is a Key Player in Alzheimer’s Disease. In: Schulte, G., Kozielewicz, P. (eds) Pharmacology of the WNT Signaling System. Handbook of Experimental Pharmacology, vol 269. Springer, Cham. https://doi.org/10.1007/164_2021_532

Download citation

Publish with us

Policies and ethics