Skip to main content

Cardiac Function

  • Chapter
Clinical Cardiac MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 4238 Accesses

Abstract

Visualization and quantification of the cardiac pump activity by means of imaging techniques has become an essential part in the diagnosis of many cardiac diseases. This pump activity comprises a repetitive filling and emptying phase whereby one phase or both phases may be impaired by the underlying cardiac disease. Among the different available imaging modalities, MRI has become a preferred one to assess cardiac function because of its noninvasiveness, and the accuracy and reproducibility of the measurements. Moreover, cardiac function assessment by MRI is part of a more comprehensive approach including other facets such as myocardial perfusion imaging and tissue characterization. This chapter is written from the point of view of the imager, starting with a description of the mechanisms of cardiac contraction and relaxation, and how these lead to myocardial deformation and ventricular volume changes throughout the cardiac cycle. Next, it is discussed how imaging techniques can be used to assess these processes at different levels, and what major hurdles need to be passed to achieve reliable estimates of cardiac function parameters. Finally, normal reference values obtained by current MRI sequences are provided at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham TP, Nishimura RA (2001) Myocardial strain: can we finally measure contractility? J Am Coll Cardiol 37:731–734

    Article  PubMed  CAS  Google Scholar 

  • Aletras AH, Ding S, Balaban RS, Wen H (1999a) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252

    Article  PubMed  CAS  Google Scholar 

  • Aletras AH, Balaban RS, Wen H (1999b) High-resolution strain analysis of the human heart with fast-DENSE. J Magn Reson 140:41–57

    Article  PubMed  CAS  Google Scholar 

  • Alfakih K, Plein S, Thiele H et al (2003a) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329

    Article  PubMed  Google Scholar 

  • Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M (2003b) Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 18:25–32

    Article  PubMed  Google Scholar 

  • Alley MT, Napel S, Amano Y et al (1999) Fast 3D cardiac cine MR imaging. J Magn Reson Imaging 9:751–755

    Article  PubMed  CAS  Google Scholar 

  • Anderson JL, Horne BD, Pennell DJ (2005) Atrial dimensions in health and left ventricular disease using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 7:671–675

    PubMed  Google Scholar 

  • Arheden H, Holmqvist C, Thilen U et al (1999) Left-to-right shunts: comparison of measurement obtained with MR velocity mapping and with radionuclide angiography. Radiology 211:453–458

    PubMed  CAS  Google Scholar 

  • Arts T, Bovendeerd PHM, Prinzen FW, Reneman RS (1991) Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J 59:93–102

    Article  PubMed  CAS  Google Scholar 

  • Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboflash sequence. Radiology 178:357–360

    PubMed  CAS  Google Scholar 

  • Aurigemma G, Davidoff A, Silver K, Boehmer J (1992) Left ventricular mass quantitation using single-phase cardiac magnetic resonance imaging. Am J Cardiol 70:259–262

    Article  PubMed  CAS  Google Scholar 

  • Axel L, Dougherty L (1989a) Heart wall motion: improved method for spatial modulation of magnetization for MR imaging. Radiology 172:349–350

    PubMed  CAS  Google Scholar 

  • Axel L, Dougherty L (1989b) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845

    PubMed  CAS  Google Scholar 

  • Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Analysis 9:376–393

    Article  Google Scholar 

  • Azhari H, Weiss JL, Rogers WJ, Siu CO, Zerhouni EA, Shapiro EP (1993) Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3D. Am J Physiol Heart Circ Physiol 264:33–41

    Google Scholar 

  • Baer FM, Smolarz R, Jungehulsing M et al (1992) Feasibility of high-dose dipyridamole MRI for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 69:51–56

    Article  PubMed  CAS  Google Scholar 

  • Baer FM, Theissen P, Smolarz K et al (1993) Dobutamine versus dipyridamole-magnetic resonance imaging: safety and sensitivity for the diagnosis of coronary artery stenoses. Z Kardiol 82:494–503

    PubMed  CAS  Google Scholar 

  • Baer FM, Theissen P, Schneider CA, Voth E, Schicha H, Sechtem U (1994) Magnetic resonance imaging techniques for the assessment of residual myocardial viability. Herz 19:51–64

    PubMed  CAS  Google Scholar 

  • Baldy C, Duke P, Crossville P, Magnum IE, Revel D, Amyl M (1994) Automated myocardial edge detection from breath-hold cine MR images: evaluation of left ventricular volumes and mass. Magn Reson Imaging 12:589–598

    Article  PubMed  CAS  Google Scholar 

  • Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin J (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    PubMed  CAS  Google Scholar 

  • Barkhausen J, Goyen M, Rühm SG et al (2002) Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. Am J Roentgenol 178:731–735

    PubMed  Google Scholar 

  • Basha TA, Ibrahim EH, Weiss RG, Osman NF (2009) Cine cardiac imaging using black-blood steady-state free precession (BB-SSFP) at 3T. J Magn Reson Imaging 30:94–103

    Article  PubMed  Google Scholar 

  • Bavelaar-Croon CDL, Kayser HWM, van der Wall EE et al (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575

    PubMed  CAS  Google Scholar 

  • Beerbaum P, Köperich H, Barth P, Esdorn H, Gieseke J, Meyer H (2001) Noninvasive quantification of left-to-right shunts in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oxymetry. Circulation 103:2476–2482

    PubMed  CAS  Google Scholar 

  • Bellenger NG, Burgess MI, Ray SG et al (2000a) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21:1387–1396

    Article  PubMed  CAS  Google Scholar 

  • Bellenger NG, Davies LV, Francis JM, Coats AJS, Pennell DJ (2000b) Reduction of sample size for studies of remodeling of heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bellenger NG, Francis JM, Davies CL, Coats AJ, Pennell DJ (2000c) Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson 2:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bellenger NG, Marcus NJ, Rajappan K, Yacoub M, Banner NR, Pennell DJ (2002) Comparison of techniques for the measurement of left ventricular function following cardiac transplantation. J Cardiovasc Magn Reson 4:255–263

    Article  PubMed  Google Scholar 

  • Beyar R, Weiss JL, Shapiro EP, Graves WL, Rogers WJ, Weisfeldt ML (1993) Small apex-to-base heterogeneity in radius-to-thickness ratio by three-dimensional magnetic resonance imaging. Am J Physiol 264:H133–H140

    PubMed  CAS  Google Scholar 

  • Bloomer TN, Plein S, Radjenovic A et al (2001) Cine MRI using steady state free precession in the radial long axis orientation is a fast and accurate method for obtaining volumetric data of the left ventricle. J Magn Reson Imaging 14:685–692

    Article  PubMed  CAS  Google Scholar 

  • Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MGA (1997) Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques. Magn Reson Med 37:683–692

    Article  PubMed  CAS  Google Scholar 

  • Bogaert J (1997) Three-dimensional strain analysis of the human left ventricle. PhD dissertation, Catholic University, Leuven

    Google Scholar 

  • Bogaert J, Rademakers FE (2001) Regional nonuniformity of the normal adult human left ventricle. A 3D MR myocardial tagging study. Am J Physiol 280:H610–H620

    CAS  Google Scholar 

  • Bogaert JG, Bosmans H, Rademakers F et al (1995) Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. MAGMA 3:5–12

    Article  PubMed  CAS  Google Scholar 

  • Bogaert J, Maes A, Van de Werf F et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion. Circulation 99:36–43

    PubMed  CAS  Google Scholar 

  • Bogaert J, Bosmans H, Maes A, Suetens P, Marchal G, Rademakers FE (2000) Remote myocardial dysfunction following acute anterior myocardial infarction. Impact of LV shape on regional function. J Am Coll Cardiol 35:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Bolster BJ, McVeigh ER, Zerhouni EA (1990) Myocardial tagging in polar coordinates with use of striped tags. Radiology 177:769–772

    PubMed  Google Scholar 

  • Bornstedt A, Nagel E, Schalla S, Schnackenburg B, Klein C, Fleck E (2001) Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. J Magn Reson Imaging 14:300–305

    Article  PubMed  CAS  Google Scholar 

  • Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM (1992) Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol 20:787–795

    Article  PubMed  CAS  Google Scholar 

  • Bosmans H, Bogaert J, Rademakers FE et al (1996) Left ventricular radial tagging acquisition using gradient-recalled-echo techniques: sequence optimization. MAGMA 4:123–133

    Article  PubMed  CAS  Google Scholar 

  • Bottini PB, Carr AA, Prisant M, Flickinger FM, Allison JD, Gottdiener JS (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228

    Article  PubMed  CAS  Google Scholar 

  • Brandts A, Bertini M, van Dijk E-J et al (2011) Left ventricular diastolic function assessment from three-dimensional three-directional velocity-encoded MRI with retrospective valve tracking. J Magn Reson Imaging 33:312–319

    Article  PubMed  Google Scholar 

  • Brecker SJD (2000) The importance of long axis ventricular function. Heart 84:577–579

    Article  PubMed  CAS  Google Scholar 

  • Brinker JA, Weiss JL, Lappe DL et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61:626–633

    PubMed  CAS  Google Scholar 

  • Buchalter MB, Weiss JL, Rogers WJ (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81:1236–1244

    Article  PubMed  CAS  Google Scholar 

  • Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfelt ML, Shapiro EP (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28:629–635

    Article  PubMed  CAS  Google Scholar 

  • Buckberg GD, Mahajan A, Jung B, Markl M, Hennig J, Ballester-Rodes M (2006) MRI myocardial motion and fiber tracking: a confirmation of knowledge from different imaging modalities. Eur J Cardio-Thorac Surg 295:S165–S177

    Google Scholar 

  • Buser PT, Auffermann W, Holt WW et al (1989) Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. J Am Coll Cardiol 13:1294–1300

    Article  PubMed  CAS  Google Scholar 

  • Cain PA, Ahl R, Hedstrom E et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:1–10

    Article  Google Scholar 

  • Caputo GR, Suzuki JI, Kondo C et al (1990) Determination of left ventricular volume and mass with use of biphasic spin-echo MR imaging: comparison with cine MR. Radiology 177:773–777

    PubMed  CAS  Google Scholar 

  • Carr JC, Simonetti O, Bundy J et al (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  CAS  Google Scholar 

  • Casalino E, Laissy JP, Soyer P, Bouvet E, Vachon F (1996) Assessment of right ventricle function and pulmonary artery circulation by cine MRI in patients with AIDS. Chest 110:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Caudron J, Fares J, Bauer F, Dacher JN (2011) Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics 31:239–261

    Article  PubMed  Google Scholar 

  • Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. J Cardiovasc Magn Reson 4:203–210

    Article  Google Scholar 

  • Chuang ML, Hibberd MG, Salton CJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol 35:477–484

    Article  PubMed  CAS  Google Scholar 

  • Cigarroa CG, de Filippi C, Brickner ME, Alvarez LG, Wait MA, Grayburn PA (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436

    PubMed  CAS  Google Scholar 

  • Clay SR, Alfakih K, Radjenovic A et al (2006) Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long-axis orientation. Magn Reson Mater Phys 19:41–45

    Article  Google Scholar 

  • Codella NCF, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248:1004–1012

    Article  PubMed  Google Scholar 

  • Constable RT, Rath KM, Sinusas AJ, Gore JC (1994) Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 32:33–42

    Article  PubMed  CAS  Google Scholar 

  • Corsi C, Lamberti C, Catalano O et al (2005) Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models. J Cardiovasc Magn Reson 7:595–602

    Article  PubMed  Google Scholar 

  • Cottin Y, Touzery C, Guy F et al (1999) MR imaging of the heart in patients after myocardial infarction: effect of increasing intersection gap on measurements of left ventricular volume, ejection fraction and wall thickness. Radiology 213:513–520

    PubMed  CAS  Google Scholar 

  • Croisille P, Moore CC, Judd RM et al (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day old reperfused canine infarcts. Circulation 99:284–291

    PubMed  CAS  Google Scholar 

  • Culham J, Vince DJ (1988) Cardiac output by MR imaging: an experimental study comparing right ventricle and left ventricle with thermodilution. J Can Assoc Radiol 39:247–249

    CAS  Google Scholar 

  • Daneshvar D, Wei J, Tolstrup K, Thomson LEJ, Shufelt C, Merz CNB (2010) Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J 160:394–404

    Article  PubMed  Google Scholar 

  • Davarpanah AH, Chen Y-P, Kino A et al (2010) Accelerated two- and three-dimensional cine MR imaging of the heart by using a 32-channel coil. Radiology 254:98–108

    Article  PubMed  Google Scholar 

  • Dawson DK, Maceira AM, Ray VJ et al (2011) Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ Cardiovasc Imaging 4:139–146

    Article  PubMed  Google Scholar 

  • Debatin JF, Nadel SN, Sostman HD, Spritzer CE, Evans AJ, Grist TM (1992a) Magnetic resonance imaging-cardiac ejection fraction measurements: phantom study comparing four different methods. Invest Radiol 27:198–204

    Article  PubMed  CAS  Google Scholar 

  • Debatin JF, Nadel SN, Paolini JF et al (1992b) Cardiac ejection fraction: phantom study comparing cine MR imaging, radionuclide blood pool imaging and ventriculography. J Magn Reson Imaging 2:135–142

    Article  PubMed  CAS  Google Scholar 

  • Dilworth LR, Aisen AM, Mancini J, Lande I, Buda AJ (1987) Determination of left ventricular volumes and ejection fraction by nuclear magnetic resonance imaging. Am Heart J 113:24–32

    Article  PubMed  CAS  Google Scholar 

  • Dong SJ, Hees PS, Huang WM, Buffer SA, Weiss JL Jr, Shapiro EP (1999) Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 277:H1053–H1060

    PubMed  CAS  Google Scholar 

  • Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of Ï„. J Cardiovasc Magn Reson 281:H2002–H2009

    CAS  Google Scholar 

  • Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB (1993) Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology 188:371–376

    PubMed  CAS  Google Scholar 

  • Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JAC, Smiseth OA (2002) Quantitative assessment of regional myocardial deformation by Doppler strain rate echocardiography in humans. Validation against three-dimensional tagged magnetic resonance imaging. Circulation 160:50–56

    Article  Google Scholar 

  • Elgeti T, Laule M, Kaufels N et al (2009) Cardiac MR elastography: comparison with left ventricular pressure measurement. J Cardiovasc Magn Reson 11:44

    Article  PubMed  Google Scholar 

  • Fieno DS, Jaffe WC, Simonetti OP, Judd RM, Finn JP (2002) TrueFISP: assessment of accuracy for measurement of left ventricular mass in an animal model. J Magn Reson Imaging 15:526–531

    Article  PubMed  Google Scholar 

  • Fischer SE, McKinnon GC, Maier SE, Boesiger P (1993) Improved myocardial tagging contrast. Magn Reson Med 30:191–200

    Article  PubMed  CAS  Google Scholar 

  • Föll D, Jung B, Staehle F et al (2009) Visualization of multidirectional regional left ventricular dynamics by high-temporal-resolution tissue phase mapping. J Magn Reson Imaging 29:1043–1052

    Article  PubMed  Google Scholar 

  • Föll D, Jung B, Elfried S et al (2010) Magnetic resonance tissue phase mapping of myocardial motion. New insight in age and gender. Circ Cardiovasc Imaging 3:54–64

    Article  PubMed  Google Scholar 

  • Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T (1995) Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195:471–478

    PubMed  CAS  Google Scholar 

  • Forbat SM, Karwatowski SP, Gatehouse PD, Firmin DN, Longmore DB, Underwood SR (1994) Technical note: rapid measurement of left ventricular mass by spin echo magnetic resonance imaging. Br J Radiol 67:86–90

    Article  PubMed  CAS  Google Scholar 

  • Francone M, Dymarkowski S, Kalantzi M, Bogaert J (2005) Real-time MRI of ventricular septal motion: a novel approach to assess ventricular coupling. J Magn Reson Imaging 21:305–309

    Article  PubMed  Google Scholar 

  • Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16:944–951

    Article  PubMed  Google Scholar 

  • Fujita N, Duerinckx AJ, Higgins CB (1993) Variation in left ventricular regional wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J 125:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Furber A, Balzer P, Cavaro-Menard C et al (1998) Experimental validation of an automated edge-detection method for a simultaneous determination of the endocardial and epicardial borders in short-axis cardiac MR images: application in normal volunteers. J Magn Reson Imaging 8:1006–1014

    Article  PubMed  CAS  Google Scholar 

  • Fyrenius A, Wigstrom L, Bolger AF et al (1999) Pitfalls in Doppler evaluation of diastolic function: insights from 3-dimensional magnetic resonance imaging. J Am Soc Echocardiogr 12:817–826

    Article  PubMed  CAS  Google Scholar 

  • Galjee MA, van Rossum AC, van Eenige MJ, Visser FC, Kamp O, Falke TH, Visser CA (1995) Magnetic resonance imaging of the pulmonary venous flow pattern in mitral regurgitation. Independence of the investigated vein. Eur Heart J 16:1675–1685

    PubMed  CAS  Google Scholar 

  • Germain P, Roul G, Kastler B, Mossard JM, Bareiss P, Sacrez A (1992) Inter-study variability in left ventricular mass measurement. Comparison between M-mode echography and MRI. Eur Heart J 13:1011–1019

    PubMed  CAS  Google Scholar 

  • Giorgi B, Matton N, Dymarkowski S, Rademakers FE, Bogaert J (2003) Assessment of ventricular septal motion in patients clinically suspected of constrictive pericarditis, using magnetic resonance imaging. Radiology 228:417–424

    Article  PubMed  Google Scholar 

  • Gopal AS, Keller AM, Rigling R, King DL, King DK Jr (1993) Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 22:258–270

    Article  PubMed  CAS  Google Scholar 

  • Goshtasby AA, Turner DA (1996) Fusion of short-axis and long-axis cardiac MR images. Comput Med Imaging Graph 20:77–87

    Article  PubMed  CAS  Google Scholar 

  • Götte MJW, Germans T, Rüssel IK et al (2006) Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging. Studies in normal and impaired left ventricular function. J Am Coll Cardiol 48:2002–2011

    Article  PubMed  Google Scholar 

  • Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263

    Article  PubMed  CAS  Google Scholar 

  • Griswold MA, Jakob PM, Chen Q et al (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41:1236–1245

    Article  PubMed  CAS  Google Scholar 

  • Grothues F, Smith GC, Moon JCC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    Article  PubMed  Google Scholar 

  • Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223

    Article  PubMed  Google Scholar 

  • Grothues F, Boenigk H, Graessner J, Kanowski M, Klein HU (2007) Balanced steady-state free precession versus segmented fast low-angle shot for the evaluation of ventricular volumes, mass, and function at 3 Tesla. J Magn Reson Imaging 26:392–400

    Article  PubMed  Google Scholar 

  • Guzman PA, Maughan WL, Yin FC et al (1981) Transseptal pressure gradient with leftward septal displacement during the Mueller manoeuvre in man. Br Heart J 46:657–662

    Article  PubMed  CAS  Google Scholar 

  • Haber I, Metaxas DN, Geva T, Axel L (2005) Three-dimensional systolic kinematics of the right ventricle. Am J Physiol Heart Circ Physiol 289:H1826–H1833

    Article  PubMed  CAS  Google Scholar 

  • Hansen DE, Daughters G, Alderman EL, Ingels NJ, Miller DC (1988) Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res 62:941–952

    PubMed  CAS  Google Scholar 

  • Hartnell G, Cerel A, Kamalesh M et al (1994) Detection of myocardial ischemia, value of combined myocardial perfusion and cineangiographic MR imaging. Am J Roentgenol 163:1061–1067

    CAS  Google Scholar 

  • Hatabu H, Gefter WB, Axel L (1994) MR imaging with spatial modulation of magnetization in the evaluation of chronic central pulmonary thromboemboli. Radiology 190:791–796

    PubMed  CAS  Google Scholar 

  • Hatle LK, Appleton CP, Popp RL (1989) Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation 79:357–370

    Article  PubMed  CAS  Google Scholar 

  • Hees PS, Fleg JL, Dong SJ, Shapiro EP (2004) MRI and echocardiographic assessment of the diastolic dysfunction of normal aging: altered LV pressure decline or load? Am J Physiol 286:H782–H788

    CAS  Google Scholar 

  • Hendrich K, Xu Y, Kim S, Ugurbil K (1994) Surface coil cardiac tagging and (31)P spectroscopic localization with B-1-insensitive adiabatic pulses. Magn Reson Med 31:541–545

    Article  PubMed  CAS  Google Scholar 

  • Herregods M, De Paep G, Bijnens B et al (1994) Determination of left ventricular volume by two-dimensional echocardiography: comparison with magnetic resonance imaging. Eur Heart J 15:1070–1073

    PubMed  CAS  Google Scholar 

  • Hess AT, Zhong X, Spottiswoode BS, Epstein FH, Meintjes EM (2009) Myocardial 3D strain calculation by combining cine displacement encoding with stimulated echoes (DENSE) and cine strain encoding (SENC) imaging. Magn Reson Med 62:77–84

    Article  PubMed  Google Scholar 

  • Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J (2001) Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 102:502–507

    Article  Google Scholar 

  • Hori Y, Yamada N, Higashi M, Hirai N, Nakatani S (2003) Rapid evaluation of right and left ventricular function and mass using real-time true-FISP cine MR imaging without breath-hold: comparison with segmented true-FISP cine MR imaging with breath-hold. J Cardiovasc Magn Reson 5:439–450

    Article  PubMed  Google Scholar 

  • Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histologic correlation. Am J Physiol 274:H1627–H1634

    PubMed  CAS  Google Scholar 

  • Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7:775–782

    Article  PubMed  Google Scholar 

  • Hudsmith LE, Petersen SE, Tyler DJ et al (2006) Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 and 3 Tesla: a validation study. J Magn Reson Imaging 24:312–318

    Article  PubMed  Google Scholar 

  • Hudsmith LE, Cheng AS, Tyler DJ et al (2007) Assessment of left atrial volumes at 1.5 Tesla and 3 Tesla using FLASH and SSFP cine imaging. J Cardiovasc Magn Reson 9:673–679

    Article  PubMed  CAS  Google Scholar 

  • Hurrell DG, Nishimura RA, Higano ST et al (1996) Value of dynamic respiratory changes in left and right ventricular pressures for the diagnosis of constrictive pericarditis. Circulation 93:2007–2013

    PubMed  CAS  Google Scholar 

  • Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342

    Article  PubMed  Google Scholar 

  • Iino M, Dymarkowski S, Chaothawee L, Delcroix M, Bogaert J (2008) Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism. Eur Radiol 18:792–799

    Article  PubMed  Google Scholar 

  • Iwase M, Nagata K, Izawa H (1993) Age-related changes in left and right ventricular filling velocity profiles and their relationship in normal subjects. Am Heart J 126:419–426

    Article  PubMed  CAS  Google Scholar 

  • Jahnke C, Paetsch I, Gebker R, Bornstedt A, Fleck E, Nagel E (2006) Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology 241:718–728

    Article  PubMed  Google Scholar 

  • Jahnke C, Nagel E, Gebker R et al (2007) Four-dimensional single breath-hold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging 25:737–742

    Article  PubMed  Google Scholar 

  • Janik M, Cham MD, Ross MI et al (2008) Effects if papillary muscles and trabeculae on left ventricular quantification: increased impact of methodological variability in patients with left ventricular hypertrophy. J Hypertens 26:1677–1685

    Article  PubMed  CAS  Google Scholar 

  • Janz RF (1982) Estimation of local myocardial stress. Am J Physiol 242:H875–H881

    PubMed  CAS  Google Scholar 

  • Jarvinen VM, Kupari MM, Hekali PE, Poutanen VP (1994a) Assessment of left atrial volumes and phasic function using cine magnetic resonance imaging in normal subjects. Am J Cardiol 73:1135–1137

    Article  PubMed  CAS  Google Scholar 

  • Jarvinen VM, Kupari MM, Hekali PE, Poutanen VP (1994b) Right atrial MR imaging studies of cadaveric atrial casts and comparisons with right and left atrial volumes and function in healthy subjects. Radiology 191:137–142

    PubMed  CAS  Google Scholar 

  • Jauhiainen T, Järvinen VM, Hekali PE (2002) Evaluation of methods for MR imaging of human right ventricular heart volumes and mass. Acta Radiol 43:587–592

    Article  PubMed  CAS  Google Scholar 

  • Jessup M, Sutton MS, Weber KT, Janicki JS (1987) The effect of chronic pulmonary hypertension on left ventricular size, function, and interventricular septal motion. Am Heart J 113:1114–1122

    Article  PubMed  CAS  Google Scholar 

  • Jung B, Markl M, Föll D, Hennig J (2006a) Investigating myocardial motion by MRI using tissue phase mapping. Eur J Cardiothorac Surg 29S:S150–S157

    Article  Google Scholar 

  • Jung B, Föll D, Böttler P et al (2006b) J Magn Reson Imaging 24:1033–1039

    Article  PubMed  Google Scholar 

  • Kacere RD, Pereyra M, Nemeth MA, Muthupillai R, Flamm SD (2005) Quantitative assessment of left ventricular function: steady-state free precession MR imaging with or without sensitivity encoding. Radiology 235:1031–1305

    Article  PubMed  Google Scholar 

  • Kaji S, Yang PC, Kerr AB et al (2001) Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 38:527–533

    Article  PubMed  CAS  Google Scholar 

  • Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 54:1407–1424

    Article  PubMed  Google Scholar 

  • Katz J, Whang J, Boxt LM et al (1993) Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J Am Coll Cardiol 21:1475–1481

    Article  PubMed  CAS  Google Scholar 

  • Kaul S, Wismer GL, Brady TJ (1986) Measurement of normal left heart dimensions using optimally oriented MR images. Am J Roentgenol 146:75–79

    CAS  Google Scholar 

  • Kim D, Gilson WD, Kramer CM, Epstein FH (2004) Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 230:862–871

    Article  PubMed  Google Scholar 

  • Klein AL, Cohen GI, Pietrolungo JF et al (1993) Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary venous flow. J Am Coll Cardiol 22:1935–1943

    Article  PubMed  CAS  Google Scholar 

  • Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341:373–374

    Article  PubMed  CAS  Google Scholar 

  • Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB (1991) Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. Am J Roentgenol 157:9–16

    CAS  Google Scholar 

  • Korosoglou G, Youssel AA, Bilchick KC et al (2008) Real-time fast strain-encoded magnetic resonance imaging to evaluate regional myocardial function at 3.0 Tesla: comparison to conventional tagging. J Magn Reson Imaging 27:1012–1018

    Article  PubMed  Google Scholar 

  • Korosoglou G, Futterer S, Humpert PM et al (2009a) Strain-encoded cardiac MR during high-dose dobutamine stress testing: comparison to cine imaging and to myocardial tagging. J Magn Reson Imaging 29:1053–1061

    Article  PubMed  Google Scholar 

  • Korosoglou G, Lossnitzer D, Schellberg D et al (2009b) Strain-encoded cardiac magnetic resonance imaging as an adjunct for dobutamine stress testing. Incremental value to conventional wall motion analysis. Circ Cardiovasc Imaging 2:132–140

    Article  PubMed  Google Scholar 

  • Korosoglou G, Elhmidi Y, Steen H et al (2010a) Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1, 493 consecutive patients. Assessment of myocardial wall motion and perfusion. J Am Coll Cardiol 56:1225–1234

    Article  PubMed  CAS  Google Scholar 

  • Korosoglou G, Lehrke S, Wochele A et al (2010b) Strain-encoded CMR for the detection of inducible ischemia during intermediate stress. J Am Coll Cardiol Imaging 3:361–371

    Google Scholar 

  • Kozerke S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med 42:970–978

    Article  PubMed  CAS  Google Scholar 

  • Kozerke S, Schwitter J, Pedersen EM, Boesiger P (2001) Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging 14:106–112

    Article  PubMed  CAS  Google Scholar 

  • Kramer CM, Barkhausen J, Flamm SD, Kim R, Nagel E (2008) Society for cardiovascular magnetic resonance board of trustees task force on standardized protocols standardized cardiovascular magnetic resonance imaging (CMR) protocols. J Cardiovasc Magn Reson 10:35

    Article  PubMed  Google Scholar 

  • Kroft LJ, de Roos A (1999) Biventricular diastolic cardiac function assessed by MR flow imaging using a single angulation. Acta Radiol 40:563–568

    Article  PubMed  CAS  Google Scholar 

  • Kroft LJM, Simons P, Van Laar JM, de Roos A (2000) Patients with pulmonary fibrosis: cardiac function assessed with MR imaging. Radiology 216:464–471

    PubMed  CAS  Google Scholar 

  • Kudelka AM, Turner DA, Liebson PR, Macioch JE, Wang JZ, Barron JT (1997) Comparison of cine magnetic resonance imaging and Doppler echocardiography for evaluation of left ventricular diastolic function. Am J Cardiol 80:384–386

    Article  PubMed  CAS  Google Scholar 

  • Kühl HP, Spuentrup E, Wall A et al (2004) Assessment of myocardial function with interactive non-breath-hold real-time MR imaging: comparison with echocardiography and breath-hold cine MR imaging. Radiology 231:198–207

    Article  PubMed  Google Scholar 

  • Kuijer JPA, Marcus JT, Götte MJW, van Rossum AC, Heethaar RM (2002) Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson 4:341–351

    Article  PubMed  Google Scholar 

  • Lalande A, Legrand L, Walker PM et al (1999) Automatic detection of left ventricular contours from cine magnetic resonance imaging using fuzzy logic. Invest Radiol 34:211–217

    Article  PubMed  CAS  Google Scholar 

  • Lamb HJ, Doornbos J, Van der Velde EA, Kruit MC, Reiber JH, de Roos A (1996) Echo planar MRI of the heart on a standard system: validation of measurements of left ventricular function and mass. J Comput Assist Tomogr 20:942–949

    Article  PubMed  CAS  Google Scholar 

  • Lauerma K, Harjula A, Jarvinen V, Kupari M, Keto P (1996) Assessment of right and left atrial function in patients with transplanted hearts with the use of magnetic resonance imaging. J Heart Lung Transplant 15:360–367

    PubMed  CAS  Google Scholar 

  • Lee VS, Resnick D, Bundy JM, Simonetti OP, Lee P, Weinreb JC (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 222:835–842

    Article  PubMed  Google Scholar 

  • Legget ME (1999) Usefulness of parameters of left ventricular wall stress and systolic function in the evaluation of patients with aortic stenosis. Echocardiography 16:701–710

    Article  PubMed  Google Scholar 

  • Lester SJ, Tajik AJ, Nishimura RA, Kandheria BK, Seward JB (2008) Unlocking the mysteries of diastolic function. Deciphering the Rosetta stone 10 years later. J Am Coll Cardiol 51:679–689

    Article  PubMed  Google Scholar 

  • Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566

    Article  PubMed  CAS  Google Scholar 

  • Lima JA, Guzman PA, Yin FC et al (1986) Septal geometry in the unloaded living human heart. Circulation 74:463–468

    Article  PubMed  CAS  Google Scholar 

  • Lima JAC, Jeremy R, Guier W et al (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue ragging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21:1741–1751

    Article  PubMed  CAS  Google Scholar 

  • Lingamneni A, Hardy PA, Powell KA, Pelc NJ, White RD (1995) Validation of cine-phase-contrast MR imaging for motion analysis. J Magn Reson Imaging 5:331–338

    Article  PubMed  CAS  Google Scholar 

  • Longmore DB, Underwood SR, Hounsfield GN (1985) Dimensional accuracy of magnetic resonance in studies of the heart. Lancet 15:1360–1362

    Article  Google Scholar 

  • Lorenz CH (2000) The range of normal values of cardiovascular structures in infants, children and adolescents measured by magnetic resonance imaging. Pediatr Cardiol 21:37–46

    Article  PubMed  CAS  Google Scholar 

  • Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21

    Article  PubMed  CAS  Google Scholar 

  • Lorenz CH, Pastorek JS, Bundy JM (2000) Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson 2:97–108

    Article  PubMed  CAS  Google Scholar 

  • Lurz P, Muthurangu V, Schievano S et al (2009) Feasibility and reproducibility of biventricular volumetric assessment of cardiac function during exercise using real-time radial k-t SENSE magnetic resonance imaging. J Magn Reson Imaging 29:1062–1070

    Article  PubMed  Google Scholar 

  • Lutz A, Bornstedt A, Manzke R, Etyngier P et al (2011) Acceleration of tissue phase mapping by k-t BLAST: a detailed analysis of the influence of k-t BLAST for the quantification of myocardial motion at 35. J Cardiovasc Magn Reson 13:5

    Article  PubMed  Google Scholar 

  • Maceira AM, Prasad SK, Khan M, Pennell DJ (2006a) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426

    Article  PubMed  CAS  Google Scholar 

  • Maceira AM, Prasad SK, Khan M, Pennell DJ (2006b) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27:2879–2888

    Article  PubMed  Google Scholar 

  • Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ (2010) Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:65

    Article  PubMed  Google Scholar 

  • Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JAC, Bluemke DA (2008) Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 28:60–66

    Article  PubMed  Google Scholar 

  • Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45:813–825

    Article  PubMed  CAS  Google Scholar 

  • Manka R, Buehrer M, Boesiger P, Fleck E, Kozerke S (2010) Performance of simultaneous cardiac-respiratory self-gated three-dimensional MR imaging of the heart: initial experience. Radiology 255:909–916

    Article  PubMed  Google Scholar 

  • Marcus JT, Vonk Noordegraaf A, De Vries PM et al (1998) MRI evaluation of right ventricular pressure overload in chronic pulmonary disease. J Magn Reson Imaging 8:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Marcus JT, Götte MJW, DeWaal LK et al (1999a) The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson 1:1–6

    Article  PubMed  CAS  Google Scholar 

  • Marcus JT, DeWaal LK, Götte MJ, van der Geest RJ, Heethaar RM, Van Rossum AC (1999b) MRI-derived left ventricular function parameters and mass in healthy young adults: relation with gender and body size. Int J Card Imaging 15:411–419

    Article  PubMed  CAS  Google Scholar 

  • Markiewicz W, Sechtem U, Higgins CB (1987a) Evaluation of the right ventricle by magnetic resonance imaging. Am Heart J 113:8–15

    Article  PubMed  CAS  Google Scholar 

  • Markiewicz W, Sechtem U, Kirby R, Derugin N, Caputo GC, Higgins CB (1987b) Measurement of ventricular volumes in the dog by nuclear magnetic resonance imaging. J Am Coll Cardiol 10:170–177

    Article  PubMed  CAS  Google Scholar 

  • Masci PG, Dymarkowski S, Rademakers FE, Bogaert J (2009) Determination of regional ejection fraction in patients with myocardial infarction by using merged late gadolinium enhancement and cine MR: feasibility study. Radiology 250:50–60

    Article  PubMed  Google Scholar 

  • Matter C, Nagel E, Stuber M, Boesiger P, Hess OM (1996) Assessment of systolic and diastolic LV function by MR myocardial tagging. Basic Res Cardiol 91(Suppl 2):23–28

    Article  PubMed  Google Scholar 

  • Matthaei D, Frahm J, Haase A, Hanicke W (1985) Regional physiological functions depicted by sequences of rapid magnetic resonance images. Lancet 19:893

    Article  Google Scholar 

  • McVeigh ER, Atalar E (1992) Cardiac tagging with breath-hold cine MRI. Magn Reson Med 28:318–327

    Article  PubMed  CAS  Google Scholar 

  • McVeigh ER, Zerhouni EA (1991) Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180:677–683

    PubMed  CAS  Google Scholar 

  • Mertens LL, Friedberg MK (2010) Imaging of the right ventricle—current state of the art. Nat Rev Cardiol 7:551–563

    Article  PubMed  Google Scholar 

  • Miller S, Simonetti OP, Carr J, Kramer U, Finn JP (2002) MR imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269

    Article  PubMed  Google Scholar 

  • Mirsky I, Corin WJ, Murakami T, Grimm J, Hess OM, Krayenbuehl HP (1988) Correction for preload in assessment of myocardial contractility in aortic and mitral valve disease. Application of the concept of systolic myocardial stiffness. Circulation 78:68–80

    Article  PubMed  CAS  Google Scholar 

  • Mogelvang J, Thomsen C, Mehlsen J, Bräckle G, Stubgaard M, Henriksen O (1986) Evaluation of left ventricular volumes measured by magnetic resonance imaging. Eur Heart J 7:1016–1021

    PubMed  CAS  Google Scholar 

  • Mohiaddin RH, Wann SL, Underwood R, Firmin DN, Rees S, Longmore DB (1990) Vena caval flow: assessment with cine MR velocity mapping. Radiology 177:537–541

    PubMed  CAS  Google Scholar 

  • Mohiaddin RH, Amanuma M, Kilner PJ, Pennell DJ, Manzara C, Longmore DB (1991) MR phase-shift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr 15:237–243

    Article  PubMed  CAS  Google Scholar 

  • Moon JCC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797

    Article  PubMed  Google Scholar 

  • Moore CC, O’Dell WG, McVeigh ER, Zerhouni EA (1992) Calculation of three-dimensional left ventricular strains from biplanar tagged MR images. J Magn Reson Imaging 2:165–175

    Article  PubMed  CAS  Google Scholar 

  • Moore CC, Reeder SB, McVeigh ER (1994) Tagged MR imaging in a deforming phantom: photographic validation. Radiology 190:765–769

    PubMed  CAS  Google Scholar 

  • Moreo A, Ambrosio G, De Chiara B et al (2009) Influence of myocardial fibrosis on left ventricular diastolic function. Noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2:437–443

    Article  PubMed  Google Scholar 

  • Mostbeck GH, Hartiala JJ, Foster E, Fujita N, Dulce MC, Higgins CB (1993) Right ventricular diastolic filling: evaluation with velocity-encoded cine MRI. J Comput Assist Tomogr 17:245–252

    Article  PubMed  CAS  Google Scholar 

  • Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS (2008) Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology 248:782–791

    Article  PubMed  Google Scholar 

  • Myerson SG, Montgomery HE, World MJ, Pennell DJ (2002a) Left ventricular mass. Reliability of M-mode and 2-dimensional echocardiographic formulas. Hypertension 40:673–678

    Article  PubMed  CAS  Google Scholar 

  • Myerson SG, Bellenger NG, Pennell DJ (2002b) Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39:750–755

    Google Scholar 

  • Nagel E, Schneider U, Schalla S et al (2000) Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson 2:7–14

    Article  PubMed  CAS  Google Scholar 

  • Naito H, Arisawa J, Harada K, Yamagami H, Kozuka T, Tamura S (1995) Assessment of right ventricular regional contraction and comparison with the left ventricle in normal humans: a cine magnetic resonance study with presaturation myocardial tagging. Br Heart J 74:186–191

    Article  PubMed  CAS  Google Scholar 

  • Nasiraei-Moghaddam A, Gharib M (2009) Evidence for the existence of a functional helical myocardial band. Am J Physiol Heart Circ Physiol 296:H127–H131

    Article  PubMed  CAS  Google Scholar 

  • Neizel M, Lossnitzer D, Korosoglou G et al (2009) Strain-encoded MRI for evaluation of left ventricular function and transmurality in acute myocardial infarction. Circ Cardiovasc Imaging 2:116–122

    Article  PubMed  Google Scholar 

  • Nesser HJ, Sugeng L, Corsi C et al (2007) Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance and clinical utility testing. Heart 93:572–578

    Article  Google Scholar 

  • Nesser HJ, Mor-Avi V, Gorissen W et al (2009) Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J 30:1565–1573

    Article  PubMed  Google Scholar 

  • Niemann PS, Pinho L, Balbach T et al (2007) Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 50:1668–1676

    Article  PubMed  Google Scholar 

  • O’Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195:829–835

    PubMed  Google Scholar 

  • Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060

    Article  PubMed  CAS  Google Scholar 

  • Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46:324–334

    Article  PubMed  CAS  Google Scholar 

  • Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, de Roos A (2002) Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 144:198–205

    Article  PubMed  Google Scholar 

  • Paelinck BP, de Roos A, Bax JJ et al (2005) Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol 45:1109–1116

    Article  PubMed  Google Scholar 

  • Palmon LC, Reichek N, Yeon SB et al (1994) Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 89:122–131

    PubMed  CAS  Google Scholar 

  • Pan L, Stuber M, Kraitchman DL, Fritzges DL, Gilson WD, Osman NF (2006) Real-time imaging of regional functional using FastSENC. Magn Reson Med 55:386–395

    Article  PubMed  Google Scholar 

  • Papavassiliu T, Kühl HP, Schröder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64

    Article  PubMed  Google Scholar 

  • Parish V, Hussain T, Beerbaum P et al (2010) Single breath-hold assessment of ventricular volumes using 32-channel coil technology and an extracellular contrast agent. J Magn Reson Imaging 31:838–844

    Article  PubMed  Google Scholar 

  • Pattynama PM, Doornbos J, Hermans J, van der Wall EE, de Roos A (1992) Magnetic resonance evaluation of regional left ventricular function. Effect of through-plane motion. Invest Radiol 27:681–685

    Article  PubMed  CAS  Google Scholar 

  • Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A (1993) Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 187:261–268

    PubMed  CAS  Google Scholar 

  • Pattynama PM, Lamb HJ, van der Velde EA, van der Geest RJ, van der Wall EE, De Roos A (1995) Reproducibility of MRI-derived measurements of right ventricular volumes and myocardial mass. Magn Reson Imaging 13:53–63

    Article  PubMed  CAS  Google Scholar 

  • Pennell DJ, Underwood SR, Ell PJ, Swanton RH, Walker JM, Longmore DB (1990) Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography. Br Heart J 64:362–369

    Article  PubMed  CAS  Google Scholar 

  • Pennell DJ, Underwood SR, Manzara CC et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Article  PubMed  CAS  Google Scholar 

  • Pennell DJ, Firmin DN, Burger P et al (1995) Assessment of magnetic resonance velocity mapping of global ventricular function during dobutamine infusion in coronary artery disease. Br Heart J 74:163–170

    Article  PubMed  CAS  Google Scholar 

  • Perman WH, Creswell LL, Wyers SG, Moulton MJ, Pasque MK (1995) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40

    Google Scholar 

  • Petersen SE, Jung BA, Wiesmann F et al (2006) Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826

    Article  PubMed  Google Scholar 

  • Pipe JG, Boes JL, Chenevert TL (1991) Method for measuring three-dimensional motion with tagged MR imaging. Radiology 181:591–595

    PubMed  CAS  Google Scholar 

  • Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236

    Article  PubMed  CAS  Google Scholar 

  • Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oxymetry for quantification of atrial shunts. Am J Cardiol 91:1523–1525

    Article  PubMed  Google Scholar 

  • Rademakers FE, Bogaert J (2006) Cardiac dysfunction in heart failure with normal ejection fraction: MRI measurements. Prog Cardiovasc Dis 49:215–227

    Article  PubMed  Google Scholar 

  • Rademakers FE, Buchalter MB, Rogers WJ et al (1992) Dissociation between left ventricular untwisting and filling: accentuation by catecholamines. Circulation 85:1572–1581

    PubMed  CAS  Google Scholar 

  • Rademakers FE, Rogers WJ, Guier WH et al (1994) Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89:1174–1182

    PubMed  CAS  Google Scholar 

  • Rademakers FE, Marchal G, Mortelmans L, Van de Werf F, Bogaert J (2003) Evolution of regional performance after an acute anterior myocardial infarction in humans using magnetic resonance tagging. J Physiol 546:777–787

    Article  PubMed  CAS  Google Scholar 

  • Rajappan K, Livieratos L, Camici PG, Pennell DJ (2002) Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 43:806–810

    PubMed  Google Scholar 

  • Robinson TF, Factor SM, Sonnenblick EH (1986) The heart as a suction pump. Sci Am 254:84–91

    Article  PubMed  CAS  Google Scholar 

  • Rogers WJ, Shapiro EP, Weiss JL et al (1991) Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation 84:721–731

    PubMed  Google Scholar 

  • Romiger MB, Bachmann GF, Geuer M et al (1999) Accuracy of right and left ventricular heart volume and left ventricular muscle mass determination with cine MRI in breath holding technique. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 170:54–60

    Google Scholar 

  • Ryf S, Spiegel MA, Gerber M, Boesiger P (2002) Myocardial tagging with 3D CSPAMM. J Magn Reson Imaging 16:320–325

    Article  PubMed  Google Scholar 

  • Sakuma H, Fujita N, Foo TK et al (1993) Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 188:377–380

    PubMed  CAS  Google Scholar 

  • Salton CJ, Chuang ML, O’Donnell CJ et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. J Am Coll Cardiol 39:1055–1060

    Article  PubMed  Google Scholar 

  • Sampath S, Derbyshire A, Atalar E, Osman NF, Prince JL (2003) Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse technique. Magn Reson Med 50:154–163

    Article  PubMed  Google Scholar 

  • Santaralli MF, Positano V, Michelassi C, Lombardi M, Landini L (2003) Automated cardiac MR image segmentation: theory and measurement segmentation. Med Eng Phys 25:149–159

    Article  Google Scholar 

  • Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI. Assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76

    Article  PubMed  Google Scholar 

  • Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM (2010) Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 257:71–79

    Article  PubMed  Google Scholar 

  • Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athlete’s Heart. Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40:1856–1863

    Article  PubMed  Google Scholar 

  • Schulen V, Schick F, Loichat J et al (1996) Evaluation of k-space segmented cine sequences for fast functional cardiac imaging. Invest Radiol 31:512–522

    Article  PubMed  CAS  Google Scholar 

  • Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275:H2308–H2318

    PubMed  CAS  Google Scholar 

  • Sechtem U, Pflugfelder PW, Gould RG et al (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163:697–702

    PubMed  CAS  Google Scholar 

  • Semelka RC, Tomei E, Wagner S et al (1990a) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Semelka RC, Tomei E, Wagner S et al (1990b) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768

    PubMed  CAS  Google Scholar 

  • Setser RM, Fischer SE, Lorenz CH (2000) Quantification of left ventricular function with magnetic resonance images acquired in real-time. J Magn Reson Imaging 12:430–438

    Article  PubMed  CAS  Google Scholar 

  • Sierra-Galan LM, Ingkanisorn WP, Rhoads KL, Agyeman KO, Arai AE (2003) Qualitative assessment of regional left ventricular can predict MRI or radionuclide ejection fraction: an objective alternative to eyeball estimates. J Cardiovasc Magn Reson 5:451–463

    Article  PubMed  Google Scholar 

  • Sievers B, Addo M, Kirchberg S et al (2005) How much are atrial volumes and ejection fraction assessed by cardiac magnetic resonance imaging influenced by the ECG gating method? J Cardiovasc Magn Reson 7:587–593

    Article  PubMed  Google Scholar 

  • Singelton HR, Pohost GM (1997) Automatic cardiac MR image segmentation using edge detection by tissue classification in pixel neighborhoods. Magn Reson Med 37:418–424

    Article  Google Scholar 

  • Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  PubMed  CAS  Google Scholar 

  • Soldo SJ, Norris SL, Gober JR, Haywood LJ, Colletti PM, Terk M (1994) MRI-derived ventricular volume curves for the assessment of left ventricular function. Magn Reson Imaging 12:711–717

    Article  PubMed  CAS  Google Scholar 

  • Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen WJ (2009) Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 11:47

    Article  PubMed  Google Scholar 

  • Spiegel MA, Luechinger R, Schwitter J, Boesiger P (2003) Ring Tag: ring-shaped tagging for myocardial centerline assessment. Invest Radiol 38:669–678

    Article  PubMed  Google Scholar 

  • Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH (2008) 3D myocardial tissue tracking with slice followed cine DENSE MRI. J Magn Reson Imaging 27:1019–1027

    Article  PubMed  Google Scholar 

  • Spuentrup E, Schroeder J, Mahnken AH et al (2003) Quantitative assessment of left ventricular function with interactive real-time spiral and radial MR imaging. Radiology 227:870–876

    Article  PubMed  Google Scholar 

  • Stillmann AE, Wilke N, Jerosch-Herold M (1997) Use of an intravascular T1 contrast agent to improve MR cine myocardial-blood pool definition in man. J Magn Reson Imaging 7:765–767

    Article  Google Scholar 

  • Stratemeier EJ, Thompson R, Brady TJ (1986) Ejection fraction determination by MR imaging: comparison with left ventricular angiography. Radiology 158:775–777

    PubMed  CAS  Google Scholar 

  • Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347

    PubMed  Google Scholar 

  • Streeter DD, Vaishnav RN, Patel DJ, Spotniz HM, Ross J, Sonnenblick EH Jr (1970) Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10:343–363

    Google Scholar 

  • Stuber M, Scheidegger MB, Fischer SE et al (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 27:361–368

    Google Scholar 

  • Sugeng L, Mor-Avi V, Weinert L et al (2006) Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114:654–661

    Article  PubMed  Google Scholar 

  • Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. J Am Coll Cardiol Imaging 3:10–18

    Google Scholar 

  • Tardivon AA, Mousseaux E, Brenot F et al (1994) Quantification of hemodynamics in primary pulmonary hypertension with magnetic resonance imaging. Am J Respir Crit Care Med 150:1075–1080

    PubMed  CAS  Google Scholar 

  • Taylor AM, Dymarkowski S, De Meerleer K et al (2005) Validation and application of single breath-hold cine cardiac MR for ventricular function assessment in children with congenital heart disease at rest and during adenosine stress. J Cardiovasc Magn Reson 7:743–751

    Article  PubMed  Google Scholar 

  • Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    Article  PubMed  CAS  Google Scholar 

  • Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339

    Article  PubMed  Google Scholar 

  • Tsao CW, Josephson ME, Hauser TH et al (2008) Accuracy of electrocardiographic criteria for atrial enlargement: validation with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:7–14

    Article  PubMed  Google Scholar 

  • Tseng W-YI, Reese TG, Weisskoff RM, Brady TJ, Wedeen VJ (2000) Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216:128–139

    PubMed  CAS  Google Scholar 

  • Ugander M, Carlsson M, Arheden H (2010) Short-axis epicardial volume change is a measure of cardiac left ventricular short-axis function, which is independent of myocardial wall thickness. Am J Physiol Heart Circ Physiol 298:H530–H535

    Article  PubMed  CAS  Google Scholar 

  • Utz JA, Herfkens RJ, Heinsimer JA et al (1987) Cine MR determination of left ventricular ejection fraction. Am J Roentgenol 148:839–843

    CAS  Google Scholar 

  • van den Brink JS, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27

    Article  PubMed  Google Scholar 

  • van den Hout RJ, Lamb HJ, van den Aardweg JG et al (2003) Real-time MR imaging of aortic flow: influence of breathing on left ventricular stroke volume in chronic obstructive pulmonary disease. Radiology 229:513–519

    Article  PubMed  Google Scholar 

  • van der Geest RJ, Buller VG, Jansen E et al (1997) Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J Comput Assist Tomogr 21:756–765

    Article  PubMed  Google Scholar 

  • van Geuns RJM, Baks T, Gronenschild EHBM et al (2006) Automatic quantitative left ventricular analysis of cine MR images by using three-dimensional information for contour detection. Radiology 240:215–221

    Article  PubMed  Google Scholar 

  • van Rossum AC, Visser FC, Sprenger M, Van Eenige MJ, Valk J, Roos JP (1988a) Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am J Cardiol 15:628–633

    Article  Google Scholar 

  • van Rossum AC, Visser FC, van Eenige MJ, Valk J, Roos JP (1988b) Magnetic resonance imaging of the heart for determination of ejection fraction. Int J Cardiol 18:53–63

    Article  PubMed  Google Scholar 

  • van Rugge FP, Holman ER, van der Wall EE, De Roos A, van der Laarse A, Bruschke AVG (1993a) Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 14:456–463

    Article  PubMed  Google Scholar 

  • van Rugge FP, Van der Wall EE, de Roos A, Bruschke AVG (1993b) Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 22:431–439

    Article  PubMed  Google Scholar 

  • van Rugge FP, Van der Wall EE, Spanjersberg SJ et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease: quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138

    PubMed  Google Scholar 

  • Verberne HJ, Dibbets-Schneider P, Spijkerboer A et al (2006) Multicenter intercomparison assessment of consistency of left ventricular function from a gated cardiac SPECT phantom. J Nucl Cardiol 13:801–810

    Article  PubMed  Google Scholar 

  • Waldman LK, Fung YC, Covell JW (1985) Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res 57:152–163

    PubMed  CAS  Google Scholar 

  • Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63:550–562

    PubMed  CAS  Google Scholar 

  • Weiger M, Pruessmann KP, Boesiger P (2000) Cardiac real-time imaging using SENSE: sensitivity encoding scheme. Magn Reson Med 43:177–184

    Article  PubMed  CAS  Google Scholar 

  • Weinsaft JW, Cham MD, Janik M et al (2008) Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction. Int J Cardiol 126:359–365

    Article  PubMed  Google Scholar 

  • Wen Z, Zhang Z, Yu W, Fan Z, Du J, Lv B (2010) Assessing the left atrial phasic volume and function with dual-source CT: comparison with 3T MRI. Int J Cardiovasc Imaging 26:83–92

    Article  PubMed  Google Scholar 

  • Westenberg JJM, Roes SD, Marsan SD et al (2008) Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249:792–800

    Article  PubMed  Google Scholar 

  • Weyman AE, Wann S, Feigenbaum H, Dillon JC (1976) Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation 54:179–186

    PubMed  CAS  Google Scholar 

  • Weyman AE, Heger JJ, Kronik TG, Wann LS, Dillon JC, Feigenbaum H (1977) Mechanism of paradoxical early diastolic septal motion in patients with mitral stenosis: a cross-sectional echocardiographic study. Am J Cardiol 40:691–699

    Article  PubMed  CAS  Google Scholar 

  • Whitlock M, Garg A, Gelow J, Jacobson T, Broberg C (2010) Comparison of left and right atrial volume by echocardiography versus cardiac magnetic resonance imaging using the area-length method. Am J Cardiol 106:1345–1350

    Article  PubMed  Google Scholar 

  • Winter MM, Bernink FJP, Groenink M et al (2008) Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delination of the cavity. J Cardiovasc Magn Reson 10:40–47

    Article  PubMed  Google Scholar 

  • Wong AYK, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am Heart J 75:649–662

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka O, Yabe T, Okada M et al (1993) Evaluation of left ventricular mass: comparison of ultrafast computed tomography, magnetic resonance imaging, and contrast left ventriculography. Am Heart J 126:1372–1379

    Article  PubMed  CAS  Google Scholar 

  • Yim PJ, Ha B, Ferreiro JI et al (1998) Diastolic shape of the right ventricle of the heart. Anat Rec 250:316–324

    Article  PubMed  CAS  Google Scholar 

  • Young AA, Axel L (1992) Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization—a model-based approach. Radiology 185:241–247

    PubMed  CAS  Google Scholar 

  • Young AA, Axel L, Dougherty L, Bogen DK, Parenteau CS (1993) Validation of tagging with MR imaging to estimate material deformation. Radiology 188:101–108

    PubMed  CAS  Google Scholar 

  • Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867

    PubMed  CAS  Google Scholar 

  • Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ (2000) Left ventricular mass and volume: fast point calculation with guide-point modeling on MR images. Radiology 216:597–602

    PubMed  CAS  Google Scholar 

  • Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging—a new method for noninvasive assessment of myocardial motion. Radiology 169:59–63

    PubMed  CAS  Google Scholar 

  • Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part 1. Diagnosis, prognosis and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bogaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogaert, J. (2011). Cardiac Function. In: Bogaert, J., Dymarkowski, S., Taylor, A., Muthurangu, V. (eds) Clinical Cardiac MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_335

Download citation

  • DOI: https://doi.org/10.1007/174_2011_335

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23034-9

  • Online ISBN: 978-3-642-23035-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics