Skip to main content

Antibodies for Nuclear Medicine Therapy

  • Chapter
  • First Online:
Therapeutic Nuclear Medicine

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 2672 Accesses

Abstract

Immunoglobulin G (IgG) is a unique molecule with the capability of exquisite binding specificity. Its ability to bind antigens is an integral component of our immune system for clearing foreign cells from the body. In some instances, the mere binding of an IgG to the cell surface can elicit signals that trigger cell death. Although unconjugated antibodies have had an increasing role in oncology and autoimmune disorders over the past 10-15 years, over the past 50+ years, IgG has primarily been used target other compounds to tumors with the goal to illuminate tumors from surrounding normal tissues through imaging technologies, or for therapy using a variety of cytotoxic agents, such as radionuclides, drugs, toxins, or other biological agents. Radioconjugates are unique from the perspective that they allow both better detection and they also can deliver a cytotoxic dose of radiation. The cytotoxic activity can be manifested across many cell layers with strong beta-emitters, or to a narrower field using alpha-emitters. Although radiolabeled antibodies have been approved for use in mostly follicular non-Hodgkin lymphoma, their effectiveness in solid tumors has been more challenging. This chapter provides a brief overview of how radioimmunoconjugates have progressed and the potential for their future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts F, Bleichrodt RP, Oyen WJ, Boerman OC (2008) Intracavitary radioimmunotherapy to treat solid tumors. Cancer Biother Radiopharm 23:92–107

    CAS  PubMed  Google Scholar 

  • Alvarez RD, Partridge EE, Khazaeli MB et al (1997) Intraperitoneal radioimmunotherapy of ovarian cancer with 177Lu-CC49: a phase I/II study. Gynecol Oncol 65:94–101

    CAS  PubMed  Google Scholar 

  • Alvarez RD, Huh WK, Khazaeli MB et al (2002) A Phase I study of combined modality 90Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 8:2806–2811

    CAS  PubMed  Google Scholar 

  • Andersson H, Cederkrantz E, Back T et al (2009) Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2–a phase I study. J Nucl Med 50:1153–1160

    CAS  PubMed  Google Scholar 

  • Bale WF, Spar IL (1957) Studies directed toward the use of antibodies as carriers of radioactivity for therapy. Adv Biol Med Phys 5:285–356

    CAS  PubMed  Google Scholar 

  • Bale WF, Spar IL, Goodland RL, Wolfe DE (1955) In vivo and in vitro studies of labeled antibodies against rat kidney and Walker carcinoma. Proc Soc Exp Biol Med 89:564–568

    CAS  PubMed  Google Scholar 

  • Baumann M, Krause M (2004) Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results. Radiother Oncol 72:257–266

    CAS  PubMed  Google Scholar 

  • Behr TM, Behe M, Stabin MG et al (1999) High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab’ fragments in a human colonic cancer model. Cancer Res 59:2635–2643

    CAS  PubMed  Google Scholar 

  • Behr TM, Blumenthal RD, Memtsoudis S et al (2000) Cure of metastatic human colonic cancer in mice with radiolabeled monoclonal antibody fragments. Clin Cancer Res 6:4900–4907

    CAS  PubMed  Google Scholar 

  • Bennett JM, Kaminski MS, Leonard JP et al (2005) Assessment of treatment-related myelodysplastic syndromes and acute myeloid leukemia in patients with non-Hodgkin lymphoma treated with tositumomab and iodine I131 tositumomab. Blood 105:4576–4582

    CAS  PubMed  Google Scholar 

  • Bethge WA, Lange T, Meisner C et al (2010) Radioimmunotherapy with yttrium-90-ibritumomab tiuxetan as part of a reduced- intensity conditioning regimen for allogeneic hematopoietic cell transplantation in patients with advanced non-Hodgkin lymphoma: results of a phase 2 study. Blood 116:1795–1802

    CAS  PubMed  Google Scholar 

  • Blumenthal RD, Sharkey RM, Haywood L et al (1992) Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res 52:6036–6044

    CAS  PubMed  Google Scholar 

  • Boskovitz A, McLendon RE, Okamura T, Sampson JH, Bigner DD, Zalutsky MR (2009) Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of alpha-particle-emitting 211At-labeled trastuzumab. Nucl Med Biol 36:659–669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchegger F, Mach JP, Folli S, Delaloye B, Bischof-Delaloye A, Pelegrin A (1996) Higher efficiency of 131I-labeled anti-carcinoembryonic antigen-monoclonal antibody F(ab’)2 as compared to intact antibodies in radioimmunotherapy of established human colon carcinoma grafted in nude mice. Recent Results Cancer Res 141:19–35

    CAS  PubMed  Google Scholar 

  • Buchegger F, Antonescu C, Delaloye AB et al (2006) Long-term complete responses after 131I-tositumomab therapy for relapsed or refractory indolent non-Hodgkin’s lymphoma. Br J Cancer 94:1770–1776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchmann I, Bunjes D, Kotzerke J et al (2002) Myeloablative radioimmunotherapy with Re-188-anti-CD66-antibody for conditioning of high-risk leukemia patients prior to stem cell transplantation: biodistribution, biokinetics and immediate toxicities. Cancer Biother Radiopharm 17:151–163

    CAS  PubMed  Google Scholar 

  • Buchsbaum DJ, Roberson PL (1996) Experimental radioimmunotherapy: biological effectiveness and comparison with external beam radiation. Recent Results Cancer Res 141:9–18

    CAS  PubMed  Google Scholar 

  • Burdick MJ, Neumann D, Pohlman B, Reddy CA, Tendulkar RD, Macklis R (2010) External beam radiotherapy followed by 90Y-ibritumomab tiuxetan in relapsed or refractory bulky follicular lymphoma. Int J Radiat Oncol Biol Phys 78(4):1033–1039

    Google Scholar 

  • Carlsson J, Ren ZP, Wester K et al (2006) Planning for intracavitary anti-EGFR radionuclide therapy of gliomas. Literature review and data on EGFR expression. J Neurooncol 77:33–45

    CAS  PubMed  Google Scholar 

  • Carrasquillo JA, Krohn KA, Beaumier P et al (1984) Diagnosis of and therapy for solid tumors with radiolabeled antibodies and immune fragments. Cancer Treat Rep 68:317–328

    CAS  PubMed  Google Scholar 

  • Casaco A, Lopez G, Garcia I et al (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188Re in adult recurrent high-grade glioma. Cancer Biol Ther 7:333–339

    CAS  PubMed  Google Scholar 

  • Chan A, Martin M, Untch M et al (2006) Vinorelbine plus trastuzumab combination as first-line therapy for HER 2-positive metastatic breast cancer patients: an international phase II trial. Br J Cancer 95:788–793

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chatal JF, Kraeber-Bodere F, Barbet J (2008) Consolidation radioimmunotherapy of follicular lymphoma: a step towards cure? Eur J Nucl Med Mol Imaging 35:1236–1239

    PubMed  Google Scholar 

  • Chen S, Yu L, Jiang C et al (2005) Pivotal study of iodine-131-labeled chimeric tumor necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23:1538–1547

    PubMed  Google Scholar 

  • Cicone F, Russo E, Carpaneto A, et al (2010) Follicular lymphoma at relapse after rituximab containing regimens: comparison of time to event intervals prior to and after (90)Y-ibritumomab-tiuxetan. Hematol Oncol 2010

    Google Scholar 

  • Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK (1998) Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med 42:225–241

    CAS  PubMed  Google Scholar 

  • Connors JM (2005) Radioimmunotherapy–hot new treatment for lymphoma. N Engl J Med 352:496–498

    CAS  PubMed  Google Scholar 

  • Crow DM, Williams L, Colcher D, Wong JY, Raubitschek A, Shively JE (2005) Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Bioconjug Chem 16:1117–1125

    CAS  PubMed  Google Scholar 

  • Czuczman MS (2002) Immunochemotherapy in indolent non-Hodgkin’s lymphoma. Semin Oncol 29:11–17

    CAS  PubMed  Google Scholar 

  • Czuczman MS, Emmanouilides C, Darif M et al (2007) Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol 25:4285–4292

    CAS  PubMed  Google Scholar 

  • Davis TA, Kaminski MS, Leonard JP et al (2004) The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res 10:7792–7798

    CAS  PubMed  Google Scholar 

  • DeNardo SJ, DeNardo GL, O’Grady LF et al (1987) Treatment of a patient with B cell lymphoma by I-131 LYM-1 monoclonal antibodies. Int J Biol Markers 2:49–53

    CAS  PubMed  Google Scholar 

  • DeNardo GL, DeNardo SJ, Lamborn KR et al (1998a) Low-dose, fractionated radioimmunotherapy for B-cell malignancies using 131I-Lym-1 antibody. Cancer Biother Radiopharm 13:239–254

    CAS  PubMed  Google Scholar 

  • DeNardo SJ, Richman CM, Kukis DL et al (1998b) Synergistic therapy of breast cancer with Y-90-chimeric L6 and paclitaxel in the xenografted mouse model: development of a clinical protocol. Anticancer Res 18:4011–4018

    CAS  PubMed  Google Scholar 

  • Devizzi L, Guidetti A, Tarella C et al (2008) High-dose yttrium-90-ibritumomab tiuxetan with tandem stem-cell reinfusion: an outpatient preparative regimen for autologous hematopoietic cell transplantation. J Clin Oncol 26:5175–5182

    CAS  PubMed  Google Scholar 

  • Doolittle ND, Jahnke K, Belanger R et al (2007) Potential of chemo-immunotherapy and radioimmunotherapy in relapsed primary central nervous system (CNS) lymphoma. Leuk Lymphoma 48:1712–1720

    CAS  PubMed  Google Scholar 

  • Esmaeli B, McLaughlin P, Pro B et al (2009) Prospective trial of targeted radioimmunotherapy with Y-90 ibritumomab tiuxetan (Zevalin) for front-line treatment of early-stage extranodal indolent ocular adnexal lymphoma. Ann Oncol 20:709–714

    CAS  PubMed  Google Scholar 

  • Ettinger DS, Order SE, Wharam MD, Parker MK, Klein JL, Leichner PK (1982) Phase I-II study of isotopic immunoglobulin therapy for primary liver cancer. Cancer Treat Rep 66:289–297

    CAS  PubMed  Google Scholar 

  • Fisher RI, Kaminski MS, Wahl RL et al (2005) Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J Clin Oncol 23:7565–7573

    CAS  PubMed  Google Scholar 

  • Focosi D, Cecconi N, Boni G, Orciuolo E, Galimberti S, Petrini M (2008) Acute myeloid leukaemia after treatment with (90)Y-ibritumomab tiuxetan for follicular lymphoma. Hematol Oncol 26:179–181

    PubMed  Google Scholar 

  • Foss FM, Raubitscheck A, Mulshine JL et al (1998) Phase I study of the pharmacokinetics of a radioimmunoconjugate, 90Y–T101, in patients with CD5-expressing leukemia and lymphoma. Clin Cancer Res 4:2691–2700

    CAS  PubMed  Google Scholar 

  • Friedberg JW (2008) Secondary malignancies after therapy of indolent non-Hodgkin’s lymphoma. Haematologica 93:336–338

    PubMed  Google Scholar 

  • Glatting G, Muller M, Koop B et al (2006) Anti-CD45 monoclonal antibody YAML568: A promising radioimmunoconjugate for targeted therapy of acute leukemia. J Nucl Med 47:1335–1341

    CAS  PubMed  Google Scholar 

  • Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122:467–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gold P, Shuster J, Freedman SO (1978) Carcinoembryonic antigen (CEA) in clinical medicine: historical perspectives, pitfalls and projections. Cancer 42:1399–1405

    CAS  PubMed  Google Scholar 

  • Gold DV, Schutsky K, Modrak D, Cardillo TM (2003) Low-dose radioimmunotherapy (90Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res 9:3929S–3937S

    CAS  PubMed  Google Scholar 

  • Goldenberg DM (1978a) Introduction to the international conference on the clinical uses of carcinoembryonic antigen. Cancer 42:1397–1398

    CAS  Google Scholar 

  • Goldenberg DM (1978b) Immunodiagnosis and immunodetection of colorectal cancer. Cancer Bull 30:213–218

    Google Scholar 

  • Goldenberg DM (1980) An introduction to the radioimmunodetection of cancer. Cancer Res 40:2957–2959

    CAS  PubMed  Google Scholar 

  • Goldenberg DM (1988) Targeting of cancer with radiolabeled antibodies. Prospects for imaging and therapy. Arch Pathol Lab Med 112:580–587

    CAS  PubMed  Google Scholar 

  • Goldenberg DM, DeLand F, Kim E et al (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 298:1384–1386

    CAS  PubMed  Google Scholar 

  • Goldenberg DM, Gaffar SA, Bennett SJ, Beach JL (1981) Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen. Cancer Res 41:4354–4360

    CAS  PubMed  Google Scholar 

  • Goldsmith SJ (2010) Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med 40:122–135

    PubMed  Google Scholar 

  • Gordon LI, Molina A, Witzig T et al (2004a) Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20 + B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood 103:4429–4431

    CAS  Google Scholar 

  • Gordon LI, Witzig T, Molina A et al (2004b) Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma 5:98–101

    CAS  Google Scholar 

  • Hainsworth JD, Spigel DR, Markus TM et al (2009) Rituximab plus short-duration chemotherapy followed by Yttrium-90 Ibritumomab tiuxetan as first-line treatment for patients with follicular non-Hodgkin lymphoma: a phase II trial of the Sarah Cannon Oncology Research Consortium. Clin Lymphoma Myeloma 9:223–228

    CAS  PubMed  Google Scholar 

  • Hernandez MC, Knox SJ (2004) Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 59:1274–1287

    CAS  PubMed  Google Scholar 

  • Hoffmann M, Troch M, Eidherr H et al (2010) 90Y-ibritumomab tiuxetan (Zevalin) in heavily pretreated patients with mucosa associated lymphoid tissue lymphoma. Leuk Lymphoma

    Google Scholar 

  • Hohloch K, Zinzani PL, Linkesch W et al (2010) Radioimmunotherapy with 90Y-ibritumomab tiuxetan is a safe and efficient treatment for patients with B-cell lymphoma relapsed after Auto-SCT: an analysis of the international RIT-Network. Bone Marrow Transplant 46(6):901–903

    Google Scholar 

  • Huang Z, Brdlik C, Jin P, Shepard HM (2009) A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther 9:97–110

    CAS  PubMed  Google Scholar 

  • Iwamoto FM, Schwartz J, Pandit-Taskar N et al (2007) Study of radiolabeled indium-111 and yttrium-90 ibritumomab tiuxetan in primary central nervous system lymphoma. Cancer 110:2528–2534

    CAS  PubMed  Google Scholar 

  • Jacobs SA, Swerdlow SH, Kant J et al (2008) Phase II trial of short-course CHOP-R followed by 90Y-ibritumomab tiuxetan and extended rituximab in previously untreated follicular lymphoma. Clin Cancer Res 14:7088–7094

    CAS  PubMed  Google Scholar 

  • Jain N, Wierda W, Ferrajoli A et al (2009) A phase 2 study of yttrium-90 ibritumomab tiuxetan (Zevalin) in patients with chronic lymphocytic leukemia. Cancer 115:4533–4539

    CAS  PubMed  Google Scholar 

  • Jazirehi AR, Bonavida B (2005) Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene 24:2121–2143

    CAS  PubMed  Google Scholar 

  • Jones PT, Dear PH, Foote J, Neuberger MS, Winter G (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    CAS  PubMed  Google Scholar 

  • Kaminski MS, Tuck M, Estes J et al (2005) 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352:441–449

    CAS  PubMed  Google Scholar 

  • Kang BW, Kim WS, Kim C et al (2010) Yttrium-90-ibritumomab tiuxetan in combination with intravenous busulfan, cyclophosphamide, and etoposide followed by autologous stem cell transplantation in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Invest New Drugs 28:516–522

    CAS  PubMed  Google Scholar 

  • Kapadia NS, Engles JM, Wahl RL (2008) In vitro evaluation of radioprotective and radiosensitizing effects of rituximab. J Nucl Med 49:674–678

    CAS  PubMed  Google Scholar 

  • Karacay H, Brard PY, Sharkey RM et al (2005) Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res 11:7879–7885

    CAS  PubMed  Google Scholar 

  • Kassis AI (2008) Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med 38:358–366

    PubMed Central  PubMed  Google Scholar 

  • Kassis AI, Adelstein SJ (2005) Radiobiologic principles in radionuclide therapy. J Nucl Med 46(Suppl 1):4S–12S

    PubMed  Google Scholar 

  • Kenanova V, Wu AM (2006) Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 3:53–70

    CAS  PubMed  Google Scholar 

  • Kenanova V, Olafsen T, Williams LE et al (2007) Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res 67:718–726

    CAS  PubMed  Google Scholar 

  • Kim SJ, Park Y, Hong HJ (2005) Antibody engineering for the development of therapeutic antibodies. Mol Cells 20:17–29

    CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  Google Scholar 

  • Kotzerke J, Bunjes D, Scheinberg DA (2005) Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant 36:1021–1026

    CAS  PubMed  Google Scholar 

  • Kramer K, Humm JL, Souweidane MM et al (2007) Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol 25:5465–5470

    PubMed  Google Scholar 

  • Kramer K, Kushner BH, Modak S et al (2010) Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol 97:409–418

    PubMed Central  PubMed  Google Scholar 

  • Krishnan A, Nademanee A, Fung HC et al (2008) Phase II trial of a transplantation regimen of yttrium-90 ibritumomab tiuxetan and high-dose chemotherapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 26:90–95

    CAS  PubMed  Google Scholar 

  • Leahy MF, Turner JH (2010) Radio-immunotherapy of indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10-year, single institution experience of 142 consecutive patients. Blood 117(1):45–52

    Google Scholar 

  • Li L, Quang TS, Gracely EJ et al (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J Neurosurg 113:192–198

    PubMed  Google Scholar 

  • Liersch T, Meller J, Kulle B et al (2005) Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 23:6763–6770

    CAS  PubMed  Google Scholar 

  • Link BK, Martin P, Kaminski MS, Goldsmith SJ, Coleman M, Leonard JP (2010) Cyclophosphamide, vincristine, and prednisone followed by tositumomab and iodine-131-tositumomab in patients with untreated low-grade follicular lymphoma: eight-year follow-up of a multicenter phase II study. J Clin Oncol 28:3035–3041

    CAS  PubMed  Google Scholar 

  • Ma D, McDevitt MR, Barendswaard E et al (2002) Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia 16:60–66

    CAS  PubMed  Google Scholar 

  • Magni M, Di Nicola M, Testi A et al (2010) Radioimmunotherapy and secondary leukemia: a case report. Leuk Res 34:e1–e4

    PubMed  Google Scholar 

  • Mahe MA, Fumoleau P, Fabbro M et al (1999) A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 5:3249s–3253s

    CAS  PubMed  Google Scholar 

  • Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23:4265–4274

    CAS  PubMed  Google Scholar 

  • Marvin JS, Zhu Z (2006) Bispecific antibodies for dual-modality cancer therapy: killing two signaling cascades with one stone. Curr Opin Drug Discov Devel 9:184–193

    CAS  PubMed  Google Scholar 

  • Mattes MJ (2002) Radionuclide-antibody conjugates for single-cell cytotoxicity. Cancer 94:1215–1223

    CAS  PubMed  Google Scholar 

  • Mattes MJ, Sharkey RM, Karacay H, Czuczman MS, Goldenberg DM (2008) Therapy of advanced B-lymphoma xenografts with a combination of 90Y-anti-CD22 IgG (epratuzumab) and unlabeled anti-CD20 IgG (veltuzumab). Clin Cancer Res 14:6154–6160

    CAS  PubMed  Google Scholar 

  • McBride WJ, Zanzonico P, Sharkey RM et al (2006) Bispecific antibody pretargeting PET (immunoPET) with an 124I-labeled hapten-peptide. J Nucl Med 47:1678–1688

    CAS  PubMed  Google Scholar 

  • McDevitt MR, Ma D, Lai LT et al (2001) Tumor therapy with targeted atomic nanogenerators. Science 294:1537–1540

    CAS  PubMed  Google Scholar 

  • McLendon RE, Akabani G, Friedman HS et al (2007) Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects. Nucl Med Biol 34:405–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF (2007) Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res 13:5643s–5645s

    CAS  PubMed  Google Scholar 

  • Michel RB, Brechbiel MW, Mattes MJ (2003) A comparison of 4 radionuclides conjugated to antibodies for single-cell kill. J Nucl Med 44:632–640

    CAS  PubMed  Google Scholar 

  • Montz R, Klapdor R, Rothe B, Heller M (1986) Immunoscintigraphy and radioimmunotherapy in patients with pancreatic carcinoma. Nuklearmedizin 25:239–244

    CAS  PubMed  Google Scholar 

  • Moroney SPA (2005) Modern antibody technology: the impact on drug development. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  • Morrison SL, Johnson MJ, Herzenberg LA, Oi VT (1984) Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci U S A 81:6851–6855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morschhauser F, Radford J, Van Hoof A et al (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26:5156–5164

    CAS  PubMed  Google Scholar 

  • Morschhauser F, Dreyling M, Rohatiner A, Hagemeister F (2009) Bischof Delaloye A. Rationale for consolidation to improve progression-free survival in patients with non-Hodgkin’s lymphoma: a review of the evidence. Oncologist 14(Suppl 2):17–29

    CAS  PubMed  Google Scholar 

  • Morschhauser F, Kraeber-Bodere F, Wegener WA et al (2010) High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J Clin Oncol 28: 3709–3716

    Google Scholar 

  • Mueller BM, Reisfeld RA, Gillies SD (1990) Serum half-life and tumor localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside GD2. Proc Natl Acad Sci U S A 87:5702–5705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oei AL, Verheijen RH, Seiden MV et al (2007) Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer 120:2710–2714

    CAS  PubMed  Google Scholar 

  • Olafsen T, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40:167–181

    PubMed Central  PubMed  Google Scholar 

  • Order SE, Klein JL, Leichner PK (1981) Antiferritin IgG antibody for isotopic cancer therapy. Oncology 38:154–160

    CAS  PubMed  Google Scholar 

  • Paganelli G, Bartolomei M, Grana C, Ferrari M, Rocca P, Chinol M (2006) Radioimmunotherapy of brain tumor. Neurol Res 28:518–522

    CAS  PubMed  Google Scholar 

  • Pennington K, Guarion MJ, Serafini AN et al (2009) Multicenter study of radiosensitizing gemcitabine combined with fractionated radioimmunotherapy for repeated treatment cycles in advanced pancreatic cancer. J Clin Oncol 27:231 (abstract 4620)

    Google Scholar 

  • Pennington KL, Guarion MJ, Sheikh A, et al (2010) Repeated treatment cycles of fractionated radioimmunotherapy (RAIT) combined with low-dose radiosensitizing gemcitabine (Gem) in advanced pancreatic cancer (APC). ASCO GI Symposium, Orlando, Abstract 247

    Google Scholar 

  • Perrotti AP, Niscola P, Boemi S et al (2009) Long-lasting remission of a relapsed large cell non-Hodgkin’s lymphoma by Y90 ibritumomab tiuxetan as salvage therapy. Tumori 95:129–130

    PubMed  Google Scholar 

  • Pitini V, Baldari S, Altavilla G, Arrigo C, Naro C, Perniciaro F (2007) Salvage therapy for primary central nervous system lymphoma with 90Y-Ibritumomab and Temozolomide. J Neurooncol 83:291–293

    CAS  PubMed  Google Scholar 

  • Pressman D, Keighley G (1948) The zone of activity of antibodies as determined by the use of radioactive tracers. Fed Proc 7:308

    CAS  PubMed  Google Scholar 

  • Pressman D, Korngold L (1953) The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer 6:619–623

    CAS  PubMed  Google Scholar 

  • Presta LG (2008) Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol 20:460–470

    CAS  PubMed  Google Scholar 

  • Qu Z, Griffiths GL, Wegener WA et al (2005) Development of humanized antibodies as cancer therapeutics. Methods 36:84–95

    CAS  PubMed  Google Scholar 

  • Quintas-Cardama A, Wierda W, O’Brien S (2010) Investigational immunotherapeutics for B-cell malignancies. J Clin Oncol 28:884–892

    CAS  PubMed  Google Scholar 

  • Raben D, Helfrich B, Chan DC et al (2005) The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res 11:795–805

    CAS  PubMed  Google Scholar 

  • Reardon DA, Quinn JA, Akabani G et al (2006a) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with 131I and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47:912–918

    CAS  Google Scholar 

  • Reardon DA, Akabani G, Coleman RE et al (2006b) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122

    CAS  Google Scholar 

  • Reardon DA, Zalutsky MR, Bigner DD (2007) Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther 7:675–687

    CAS  PubMed  Google Scholar 

  • Reardon DA, Zalutsky MR, Akabani G et al (2008) A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro Oncol 10:182–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richman CM, Denardo SJ, O’Donnell RT et al (2005) High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res 11:5920–5927

    CAS  PubMed  Google Scholar 

  • Robert N, Leyland-Jones B, Asmar L et al (2006) Randomized phase III study of trastuzumab, paclitaxel, and carboplatin compared with trastuzumab and paclitaxel in women with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 24:2786–2792

    CAS  PubMed  Google Scholar 

  • Roboz GJ, Bennett JM, Coleman M et al (2007) Therapy-related myelodysplastic syndrome and acute myeloid leukemia following initial treatment with chemotherapy plus radioimmunotherapy for indolent non-Hodgkin lymphoma. Leuk Res 31:1141–1144

    CAS  PubMed  Google Scholar 

  • Sacchi S, Marcheselli L, Bari A et al (2008) Secondary malignancies after treatment for indolent non-Hodgkin’s lymphoma: a 16-year follow-up study. Haematologica 93:398–404

    PubMed  Google Scholar 

  • Shah JJ, Meredith R, Shen S et al (2006) Case report of a patient with primary central nervous system lymphoma treated with radioimmunotherapy. Clin Lymphoma Myeloma 7:236–238

    PubMed  Google Scholar 

  • Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Goldenberg DM (2005) Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 46(Suppl 1):115S–127S

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Goldenberg DM (2006) Targeted therapy of cancer: new prospects for antibodies and immunoconjugates. CA Cancer J Clin 56:226–243

    PubMed  Google Scholar 

  • Sharkey RM, Pykett MJ, Siegel JA, Alger EA, Primus FJ, Goldenberg DM (1987) Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 131I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res 47:5672–5677

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Motta-Hennessy C, Pawlyk D, Siegel JA, Goldenberg DM (1990) Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res 50:2330–2336

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Weadock KS, Natale A et al (1991) Successful radioimmunotherapy for lung metastasis of human colonic cancer in nude mice. J Natl Cancer Inst 83:627–632

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Karacay H, Cardillo TM et al (2005a) Improving the delivery of radionuclides for imaging and therapy of cancer using pretargeting methods. Clin Cancer Res 11:7109s–7121s

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Cardillo TM, Rossi EA et al (2005b) Signal amplification in molecular imaging by pretargeting a multivalent, bispecific antibody. Nat Med 11:1250–1255

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Burton J, Goldenberg DM (2005) Radioimmunotherapy of non-Hodgkin’s lymphoma: a critical appraisal. Expert Rev Clin Immunol 1:47–62

    Google Scholar 

  • Sharkey RM, Press OW, Goldenberg DM (2009) A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood 113:3891–3895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimoni A, Zwas ST, Oksman Y et al (2008) Ibritumomab tiuxetan (Zevalin) combined with reduced-intensity conditioning and allogeneic stem-cell transplantation (SCT) in patients with chemorefractory non-Hodgkin’s lymphoma. Bone Marrow Transplant 41:355–361

    CAS  PubMed  Google Scholar 

  • Silverstein AM (2004) Labeled antigens and antibodies: the evolution of magic markers and magic bullets. Nat Immunol 5:1211–1217

    CAS  PubMed  Google Scholar 

  • Skvortsova I, Popper BA, Skvortsov S et al (2005) Pretreatment with rituximab enhances radiosensitivity of non-Hodgkin’s lymphoma cells. J Radiat Res (Tokyo) 46:241–248

    CAS  Google Scholar 

  • Skvortsova I, Skvortsov S, Popper BA et al (2006) Rituximab enhances radiation-triggered apoptosis in non-Hodgkin’s lymphoma cells via caspase-dependent and—independent mechanisms. J Radiat Res (Tokyo) 47:183–196

    CAS  Google Scholar 

  • Slavin-Chiorini DC, Kashmiri SV, Schlom J et al (1995) Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res 55:5957s–5967s

    CAS  PubMed  Google Scholar 

  • Strohl WR (2009) Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 20:685–691

    CAS  PubMed  Google Scholar 

  • Thomson DM, Krupey J, Freedman SO, Gold P (1969) The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci U S A 64:161–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallera DA, Elson M, Brechbiel MW et al (2003) Preclinical studies targeting normal and leukemic hematopoietic cells with Yttrium-90-labeled anti-CD45 antibody in vitro and in vivo in nude mice. Cancer Biother Radiopharm 18:133–145

    CAS  PubMed  Google Scholar 

  • van Gog FB, Brakenhoff RH (1998) Stigter-van Walsum M, Snow GB, van Dongen GA. Perspectives of combined radioimmunotherapy and anti-EGFR antibody therapy for the treatment of residual head and neck cancer. Int J Cancer 77:13–18

    PubMed  Google Scholar 

  • Wang M, Oki Y, Pro B et al (2009) Phase II study of yttrium-90-ibritumomab tiuxetan in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol 27:5213–5218

    CAS  PubMed  Google Scholar 

  • Weiner LM (2006) Fully human therapeutic monoclonal antibodies. J Immunother 29:1–9

    CAS  PubMed  Google Scholar 

  • Weisser NE, Hall JC (2009) Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 27:502–520

    CAS  PubMed  Google Scholar 

  • Witzig TE, Gordon LI, Cabanillas F et al (2002a) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463

    CAS  PubMed  Google Scholar 

  • Witzig TE, Flinn IW, Gordon LI et al (2002b) Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 20:3262–3269

    CAS  PubMed  Google Scholar 

  • Wong JY, Shibata S, Williams LE et al (2003) A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res 9:5842–5852

    CAS  PubMed  Google Scholar 

  • Wygoda Z, Tarnawski R, Brady L et al (2002) Simultaneous radiotherapy and radioimmunotherapy of malignant gliomas with anti-EGFR antibody labelled with iodine 125. Preliminary results. Nucl Med Rev Cent East Eur 5:29–33

    PubMed  Google Scholar 

  • Wygoda Z, Kula D, Bierzynska-Macyszyn G et al (2006) Use of monoclonal anti-EGFR antibody in the radioimmunotherapy of malignant gliomas in the context of EGFR expression in grade III and IV tumors. Hybridoma (Larchmt) 25:125–132

    CAS  Google Scholar 

  • Yamane-Ohnuki N, Satoh M (2009) Production of therapeutic antibodies with controlled fucosylation. MAbs 1:230–236

    PubMed Central  PubMed  Google Scholar 

  • Ychou M, Azria D, Menkarios C et al (2008) Adjuvant radioimmunotherapy trial with iodine-131-labeled anti-carcinoembryonic antigen monoclonal antibody F6 F(ab’)2 after resection of liver metastases from colorectal cancer. Clin Cancer Res 14:3487–3493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zalutsky MR, Reardon DA, Akabani G et al (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49:30–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang MM, Gopal AK (2008) Radioimmunotherapy-based conditioning regimens for stem cell transplantation. Semin Hematol 45:118–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Yao Z, Garmestani K et al (2002) Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood 100:208–216

    CAS  PubMed  Google Scholar 

  • Zhang N, Khawli LA, Hu P, Epstein AL (2005) Generation of rituximab polymer may cause hyper-cross-linking-induced apoptosis in non-Hodgkin’s lymphomas. Clin Cancer Res 11:5971–5980

    CAS  PubMed  Google Scholar 

  • Zhang M, Yao Z, Zhang Z et al (2006) The anti-CD25 monoclonal antibody 7G7/B6, armed with the alpha-emitter 211At, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res 66:8227–8232

    CAS  PubMed  Google Scholar 

  • Zhang M, Yao Z, Patel H et al (2007) Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc Natl Acad Sci U S A 104:8444–8448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zinzani PL, Tani M, Fanti S et al (2008a) A phase II trial of CHOP chemotherapy followed by yttrium 90 ibritumomab tiuxetan (Zevalin) for previously untreated elderly diffuse large B-cell lymphoma patients. Ann Oncol 19:769–773

    CAS  Google Scholar 

  • Zinzani PL, Tani M, Fanti S et al (2008b) A phase 2 trial of fludarabine and mitoxantrone chemotherapy followed by yttrium-90 ibritumomab tiuxetan for patients with previously untreated, indolent, nonfollicular, non-Hodgkin lymphoma. Cancer 112:856–862

    CAS  Google Scholar 

  • Zinzani PL, Tani M, Pulsoni A et al (2008c) Fludarabine and mitoxantrone followed by yttrium-90 ibritumomab tiuxetan in previously untreated patients with follicular non-Hodgkin lymphoma trial: a phase II non-randomised trial (FLUMIZ). Lancet Oncol 9:352–358

    CAS  Google Scholar 

  • Zinzani PL, Gandolfi L, Stefoni V et al (2010a) Yttrium-90 ibritumomab tiuxetan as a single agent in patients with pretreated B-cell lymphoma: evaluation of the long-term outcome. Clin Lymphoma Myeloma Leuk 10:258–261

    CAS  Google Scholar 

  • Zinzani PL, Rossi G, Franceschetti S et al (2010b) Phase II trial of short-course R-CHOP followed by 90Y-ibritumomab tiuxetan in previously untreated high-risk elderly diffuse large B-cell lymphoma patients. Clin Cancer Res 16:3998–4004

    CAS  Google Scholar 

Download references

Acknowledgments

The authors have been supported in part by the following US Public Health Service grants from the National Cancer Institute, NIH: P01 CA103985, R01 CA107088, R01 CA115755, and R01 CA098488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Goldenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldenberg, D.M., Sharkey, R.M. (2012). Antibodies for Nuclear Medicine Therapy. In: Baum, R. (eds) Therapeutic Nuclear Medicine. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2012_670

Download citation

  • DOI: https://doi.org/10.1007/174_2012_670

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36718-5

  • Online ISBN: 978-3-540-36719-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics