Skip to main content

Synaptic and Cellular Consequences of Hearing Loss

  • Chapter
  • First Online:
Deafness

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 47))

Abstract

Hearing loss reduces synaptic activity in the central nervous system (CNS), and this commonly disrupts the electrical properties of the CNS, principally synaptic and voltage-gated currents. Although no single principle explains each of the cellular alterations, many of these changes appear to be compensatory. That is, they serve to increase a neuron’s excitability, presumably in response to diminished sound-evoked input. This chapter explores how the age of hearing loss and the extent of cochlear dysfunction influence these cellular properties. Thus, hearing loss during development usually elicits more dramatic changes to cellular properties, and these are found throughout the entire auditory neuraxis. Surprisingly, even moderate hearing loss can lead to cellular alterations that are as significant as those produced by cochlear damage. The diminished perceptual abilities that accompany hearing loss have clear peripheral bases, but the studies discussed in this chapter suggest that CNS cellular properties may be equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkat, T. R., Polley, D. B., & Hensch, T. K. (2011). A critical period for auditory thalamocortical connectivity. Nature Neuroscience, 14, 1189–1194.

    Article  PubMed  CAS  Google Scholar 

  • Bi, C., Cui, Y., Mao, Y., Dong, S., Zhang, J., & Sun, X. (2006). The effect of early auditory deprivation on the age-dependent expression pattern of NR2B mRNA in rat auditory cortex. Brain Research, 1110, 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe, S. C., Jr., Nagase, S., Miller, J. M., & Altschuler, R. A. (1995). Deafness-induced plasticity in the mature central auditory system. NeuroReport, 7, 225–229.

    PubMed  Google Scholar 

  • Burianova, J., Ouda, L., Profant, O., & Syka, J. (2009). Age-related changes in GAD levels in the central auditory system of the rat. Experimental Gerontology, 44, 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Buus, S., & Florentine, M, (2002), Growth of loudness in listeners with cochlear hearing losses: Recruitment reconsidered. Journal of the Association for Research in Otolaryngology, 3, 120–139.

    Article  PubMed  Google Scholar 

  • Cao, X. J., McGinley, M. J., & Oertel, D. (2008). Connections and synaptic function in the posteroventral cochlear nucleus of deaf jerker mice. Journal of Comparative Neurology, 510, 297–308.

    Article  PubMed  Google Scholar 

  • Caspary, D. M., Ling, L., Turner, J. G., Hughes, L. F. (2008). Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. Journal of Experimental Biology, 211, 1781–1791.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., Kuhl, D., Huganir, R. L., & Worley, P. F. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 52, 445–459.

    Google Scholar 

  • Couchman, K., Garrett, A., Deardorff, A. S., Rattay, F., Resatz, S., Fyffe, R., Walmsley, B., & LeĂŁo, R. N. (2011). Lateral superior olive function in congenital deafness. Hearing Research, 277, 163–175.

    Article  PubMed  Google Scholar 

  • Desai, N. S., Cudmore, R. H., Nelson, S. B., & Turrigiano, G. G. (2002). Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neuroscience, 5, 783–789.

    PubMed  CAS  Google Scholar 

  • de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience, 27, 180–189.

    Article  PubMed  Google Scholar 

  • Durham, D., Rubel, E. W., & Steel, K. P. (1989). Cochlear ablation in deafness mutant mice: 2-Deoxyglucose analysis suggests no spontaneous activity of cochlear origin. Hearing Research, 43, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Echegoyen, J., Neu, A., Graber, K. D., & Soltesz, I. (2007). Homeostatic plasticity studied using in vivo hippocampal activity-blockade: Synaptic scaling, intrinsic plasticity and age-dependence. PLoS One, 2(1), e700.

    Article  PubMed  Google Scholar 

  • Eggermont, J. J. (2012). Hearing loss, hyperacusis, or tinnitus: What is modeled in animal research? Hearing Research, 295, 140–149.

    Article  PubMed  Google Scholar 

  • Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Florentine M., Fastl, H., & Buus, S. (1988). Temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking. Journal of the Acoustical Society of America, 84, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Han, E. B., & Stevens, C. F. (2009). Development regulates a switch between post- and presynaptic strengthening in response to activity deprivation. Proceedings of the National Academy of Sciences of the USA, 106, 10817–10822.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J. A., & Rubel, E. W (2006). Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period. Hearing Research, 216–217, 127–137.

    Article  PubMed  Google Scholar 

  • Harrison, R. V., & Negandhi, J. (2012). Resting neural activity patterns in auditory brainstem and midbrain in conductive hearing loss. Acta Oto-Laryngologica, 132, 409–414.

    Article  PubMed  Google Scholar 

  • Insanally, M. N., Köver, H., Kim H., & Bao S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience, 29, 5456–5462.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. L., Eckrich, T., Kuhn, S., Zampini, V., Franz, C., Ranatunga, K. M., Roberts, T. P., Masetto, S., Knipper, M., Kros, C. J., & Marcotti, W. (2011). Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells. Nature Neuroscience, 14, 711–717.

    Article  PubMed  CAS  Google Scholar 

  • Jones, T. A., Leake, P. A., Snyder, R. L., Stakhovskaya, O., & Bonham, B. (2007). Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats. Journal of Neurophysiology, 98, 1898–1908.

    Article  PubMed  Google Scholar 

  • Kotak, V. C., & Sanes, D. H. (1996). Developmental influence of glycinergic transmission: Regulation of NMDA receptor-mediated EPSPs. Journal of Neuroscience, 16, 1836–1843.

    PubMed  CAS  Google Scholar 

  • Kotak, V. C., & Sanes, D. H. (1997). Deafferentation weakens excitatory synapses in the developing central auditory system. European Journal of Neuroscience, 9, 2340–2347.

    Article  PubMed  CAS  Google Scholar 

  • Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C., & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25, 3908–3918.

    Article  PubMed  CAS  Google Scholar 

  • Kotak, V. C., Breithaupt, A. D., & Sanes, D. H. (2007). Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proceedings of the National Academy of Sciences of the USA, 104, 3550–3555.

    Article  PubMed  CAS  Google Scholar 

  • Kotak, V. C., Takesian, A. E., & Sanes, D. H. (2008). Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cerebral Cortex, 18, 2098–2108.

    Article  PubMed  Google Scholar 

  • Kral, A., Hartmann, R., Tillein, J., Heid, S., & Klinke, R. (2002). Hearing after congenital deafness: Central auditory plasticity and sensory deprivation. Cerebral Cortex, 12, 797–807.

    Article  PubMed  CAS  Google Scholar 

  • Kuba, H., Oichi, Y., & Ohmori, H. (2010). Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature, 465, 1075–1078.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. Journal of Neuroscience, 26, 2115–2123.

    Article  PubMed  CAS  Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29, 14077–14085.

    Article  PubMed  CAS  Google Scholar 

  • Kurima, K., Peters, L. M., Yang, Y., Riazuddin, S., Ahmed, Z. M., Naz, S., Arnaud, D., Drury, S., Mo, J., Makishima, T., Ghosh, M., Menon, P. S., Deshmukh, D., Oddoux, C., Ostrer, H., Khan, S., Riazuddin, S., Deininger, P. L., Hampton, L. L., Sullivan, S. L., Battey, J. F., Jr., Keats, B. J., Wilcox, E. R., Friedman, T. B., & Griffith, A. J. (2002). Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nature Genetics, 30, 277–284.

    Article  PubMed  Google Scholar 

  • Larsell, O. (1931). The effect of experimental excision of one eye on the development of the optic lobe and opticus layer in larvae of the tree-frog. Journal of Experimental Zoology, 58, 1–20.

    Article  Google Scholar 

  • Lauer, A. M., Dooling, R. J., Leek, M. R., & Poling, K. P. (2007). Detection and discrimination of simple and complex sounds by Belgian Waterslager canaries. Journal of the Acoustical Society of America, 122, 3615–3627.

    Article  PubMed  Google Scholar 

  • Leao, R. N., Berntson, A., Forsythe, I. D., & Walmsley, B. (2004a). Reduced low- voltage activated K+ conductances and enhanced central excitability in a congenitally deaf (dn/dn) mouse. Journal of Physiology (London), 559, 25–33.

    Article  CAS  Google Scholar 

  • Leao, R. N., Oleskevich, S., Sun, H., Bautista, M., Fyffe, R. E., & Walmsley, B. (2004b). Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice. Journal of Neurophysiology, 91, 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  • Leao, R. N., Svahn, K., Berntson, A., & Walmsley, B. (2005). Hyperpolarization-activated (Ih) currents in auditory brainstem neurons of normal and congenitally deaf mice. European Journal of Neuroscience, 22, 147–157.

    Article  PubMed  Google Scholar 

  • LeĂŁo, R. N., Naves, M. M., LeĂŁo, K. E., & Walmsley B. (2006). Altered sodium currents in auditory neurons of congenitally deaf mice. European Journal of Neuroscience, 24(4), 1137–1146.

    Article  PubMed  Google Scholar 

  • Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology, 68, 214–220.

    Article  PubMed  Google Scholar 

  • Ling, L. L., Hughes, L. F., & Caspary, D. M. (2005). Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience, 132, 1103–1113.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Monsivais, P., Tempel, B. L., & Rubel, E. W (2004). Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1. Journal of Comparative Neurology, 470, 93–106.

    Google Scholar 

  • Lu, Y., Harris, J. A., & Rubel, E. W. (2007). Development of spontaneous miniature EPSCs in mouse AVCN neurons during a critical period of afferent-dependent neuron survival. Journal of Neurophysiology, 97, 635–646.

    Article  PubMed  Google Scholar 

  • Marder, E., & Prinz, A. A. (2002). Modeling stability in neuron and network function: The role of activity in homeostasis. Bioessays, 24, 1145–1154.

    Article  PubMed  CAS  Google Scholar 

  • McKay, S. M., & Oleskevich, S. (2007). The role of spontaneous activity in development of the endbulb of Held synapse. Hearing Research, 230, 53–63.

    Article  PubMed  Google Scholar 

  • Meltser, I., & Canlon, B. (2010). The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma. Neurobiology of Disease, 40, 325–330.

    Article  PubMed  CAS  Google Scholar 

  • Morales, B., Choi, S. Y., & Kirkwood, A. (2002). Dark rearing alters the development of GABAergic transmission in visual cortex. Journal of Neuroscience, 22, 8084–8090.

    PubMed  CAS  Google Scholar 

  • Muly, S. M., Gross, J. S., & Potashner, S. J. (2004). Noise trauma alters D-[3H]aspartate release and AMPA binding in chinchilla cochlear nucleus. Journal of Neuroscience Research, 75, 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Noh, J., Seal, R. P., Garver, J. A., Edwards, R. H., & Kandler, K. (2010). Glutamate co-release at GABA/glycinergic synapses is crucial for the refinement of an inhibitory map. Nature Neuroscience, 13(2), 232–238.

    Article  PubMed  CAS  Google Scholar 

  • Oh, S. H., Kim, C. S., & Song, J. J. (2007). Gene expression and plasticity in the rat auditory cortex after bilateral cochlear ablation. Acta Oto-Laryngologica, 127, 341–350.

    Article  PubMed  CAS  Google Scholar 

  • Oleskevich, S., & Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. Journal of Physiology (London), 540, 447–455.

    Article  CAS  Google Scholar 

  • Oleskevich, S., Youssoufian, M., & Walmsley, B. (2004). Presynaptic plasticity at two giant auditory synapses in normal and deaf mice. Journal of Physiology (London), 560, 709–719.

    Article  CAS  Google Scholar 

  • Oxenham, A. J., & Bacon, S. P. (2003). Cochlear compression: Perceptual measures and implications for normal and impaired hearing. Ear and Hearing, 24, 352–366.

    Article  PubMed  Google Scholar 

  • Popescu, M. V., & Polley, D. B. (2010). Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron, 65, 718–731.

    Article  PubMed  CAS  Google Scholar 

  • Pozo, K., & Goda, Y. (2010). Unraveling mechanisms of homeostatic synaptic plasticity. Neuron, 66, 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Ranson, A., Cheetham, C. E., Fox, K., & Sengpiel, F. (2012). Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. Proceedings of the National Academy of Sciences of the USA, 109, 1311–1316.

    Article  PubMed  CAS  Google Scholar 

  • Rao, D., Basura, G. J., Roche, J., Daniels, S., Mancilla, J. G., & Manis, P. B. (2010). Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex. Journal of Neurophysiology, 104, 2693–2703.

    Article  PubMed  Google Scholar 

  • Rich, A. W., Xie, R., & Manis, P. B. (2010). Hearing loss alters quantal release at cochlear nucleus stellate cells. Laryngoscope, 120, 2047–2053.

    Article  PubMed  Google Scholar 

  • Roberts, L. E., Eggermont, J. J., Caspary, D. M., Shore, S. E., Melcher, J. R., & Kaltenbach, J. A. (2010). Ringing ears: The neuroscience of tinnitus. Journal of Neuroscience, 30, 14972–14979.

    Article  PubMed  CAS  Google Scholar 

  • Royer, S., & Pare, D. (2003). Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature, 422, 518–522.

    Article  PubMed  CAS  Google Scholar 

  • Rubel, E. W., Parks, T. N., & Zirpel, L. (2004). Assembling, connecting, and maintaining the cochlear nucleus. In T. N. Parks, E. W. Rubel, A. N. Popper, & R. R. Fay (Eds.), Plasticity of the auditory system (pp. 8–48). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • RĂĽttiger, L., Panford-Walsh, R., Schimmang, T., Tan, J., Zimmermann, U., Rohbock, K., Kopschall, I., Limberger, A., Muller, M., Fraenzer, J. T., Cimerman, J., & Knipper, M. (2007). BDNF mRNA expression and protein localization are changed in age-related hearing loss. Neurobiology of Aging, 28, 586–601.

    Article  PubMed  Google Scholar 

  • Salvi, R. J., Wang, J., & Ding, D. (2000). Auditory plasticity and hyperactivity following cochlear damage. Hearing Research, 147, 261–274.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, D. H., Harris, W. A., & Reh, T. A. (2012). Development of the nervous system, 3rd ed. San Diego: Academic Press.

    Google Scholar 

  • Sarro, E. C., Kotak, V. C., Sanes, D. H., & Aoki, C. (2008). Hearing loss alters the subcellular distribution of presynaptic GAD and postsynaptic GABAA receptors in the auditory cortex. Cerebral Cortex, 18, 2855–2867.

    Article  PubMed  Google Scholar 

  • Schwartz, D. R., Schacht, J., Miller, J. M., Frey, K., Altschuler, R. A. (1993). Chronic electrical stimulation reverses deafness-related depression of electrically evoked 2-deoxyglucose activity in the guinea pig inferior colliculus. Hearing Research, 70, 243–249.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: Implications for age of implantation. Ear and Hearing, 23, 532–539.

    Article  PubMed  Google Scholar 

  • Shoykhet, M., Land, P. W., & Simons, D. J. (2005). Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons. Journal of Neurophysiology, 94, 3987–3995.

    Article  PubMed  Google Scholar 

  • Steel, K. P., & Bock, G. R. (1980). The nature of inherited deafness in deafness mice. Nature, 288, 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Steel, K. P., & Bock, G. R. (1983). Cochlear dysfunction in the jerker mouse. Behavioral Neuroscience, 97, 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Suneja, S. K., Benson, C. G., & Potashner, S. J. (1998a). Glycine receptors in adult guinea pig brain stem auditory nuclei: Regulation after unilateral cochlear ablation. Experimental Neurology, 154, 473–488.

    Article  PubMed  CAS  Google Scholar 

  • Suneja, S. K., Potashner, S. J., Benson, C. G. (1998b). Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Experimental Neurology, 151, 273–288.

    Article  PubMed  CAS  Google Scholar 

  • Suneja, S. K., Potashner, S. J., & Benson, C. G. (2000). AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Experimental Neurology, 165, 355–369.

    Article  PubMed  CAS  Google Scholar 

  • Suneja, S. K., Yan, L., & Potashner, S. J. (2005). Regulation of NT-3 and BDNF levels in guinea pig auditory brain stem nuclei after unilateral cochlear ablation. Journal of Neuroscience Research, 80, 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2010). Presynaptic GABA(B) receptors regulate experience-dependent development of inhibitory short-term plasticity. Journal of Neuroscience, 30, 2716–2727.

    Article  PubMed  CAS  Google Scholar 

  • Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2012). Age-dependent effect of hearing loss on cortical inhibitory synapse function. Journal of Neurophysiology, 107, 937–947.

    Article  PubMed  CAS  Google Scholar 

  • Tan, J., RĂĽttiger, L., Panford-Walsh, R., Singer, W., Schulze, H., Kilian, S. B., Hadjab, S., Zimmermann, U., Köpschall, I., Rohbock, K., & Knipper, M. (2007). Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience, 145, 715–726.

    Google Scholar 

  • Tan, J., Widjaja, S., Xu, J., & Shepherd, R. K. (2008). Cochlear implants stimulate activity-dependent CREB pathway in the deaf auditory cortex: Implications for molecular plasticity induced by neural prosthetic devices. Cerebral Cortex, 18, 1799–1813.

    Article  PubMed  Google Scholar 

  • Tritsch, N. X., Yi, E., Gale, J. E., Glowatzki, E., & Bergles, D. E. (2007). The origin of spontaneous activity in the developing auditory system. Nature, 450, 50–55.

    Article  PubMed  CAS  Google Scholar 

  • Tritsch, N. X., RodrĂ­guez-Contreras, A., Crins, T. T., Wang, H. C., Borst, J. G., & Bergles, D. E. (2010). Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset. Nature Neuroscience, 13, 1050–1052.

    Article  PubMed  CAS  Google Scholar 

  • Tucci, D. L., Cant, N. B., & Durham, D. (1999). Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope, 109, 1359–1371.

    Article  PubMed  CAS  Google Scholar 

  • Tucci, D. L., Cant, N. B., & Durham, D. (2001). Effects of conductive hearing loss on gerbil central auditory system activity in silence. Hearing Research, 155, 124–132.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annual Review of Neuroscience, 34, 89–103.

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano, G. (2012). Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harbor Perspectives in Biology, 4, a005736.

    Article  PubMed  Google Scholar 

  • Vale, C., & Sanes, D. H. (2000). Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. Journal of Neuroscience, 20, 1912–1921.

    PubMed  CAS  Google Scholar 

  • Vale, C., & Sanes, D. H. (2002). The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. European Journal of Neuroscience, 16, 2394–23404.

    Article  PubMed  Google Scholar 

  • Vale, C., Schoorlemmer, J., & Sanes, D. H. (2003). Deafness disrupts chloride transporter function and inhibitory synaptic transmission. Journal of Neuroscience, 23, 7516–7524.

    PubMed  CAS  Google Scholar 

  • Valverde, F. (1968). Structural changes in the area striata of the mouse after enucleation. Experimental Brain Research, 5, 274–292.

    Article  CAS  Google Scholar 

  • Wang, H., Brozoski, T. J., Ling, L., Hughes, L. F., & Caspary, D. M. (2011a). Impact of sound exposure and aging on brain-derived neurotrophic factor and tyrosine kinase B receptors levels in dorsal cochlear nucleus 80 days following sound exposure. Neuroscience, 172, 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Yin, G., Rogers, K., Miralles, C., De Blas, A. L., & Rubio, M. E. (2011b). Monaural conductive hearing loss alters the expression of the GluA3 AMPA and glycine receptor α1 subunits in bushy and fusiform cells of the cochlear nucleus. Neuroscience, 199, 438–451.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., & Manis, P. B. (2005). Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. Journal of Neurophysiology, 94, 1814–1824.

    Article  PubMed  Google Scholar 

  • Wang, Y., & Manis, P. B. (2006). Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss. Journal of the Association for Research in Otolaryngology, 7, 412–424.

    Article  PubMed  Google Scholar 

  • Xu, H., Kotak, V. C., & Sanes, D. H. (2007). Conductive hearing loss disrupts synaptic and spike adaptation in developing auditory cortex. Journal of Neuroscience, 27, 9417–9426.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H., Kotak, V. C., & Sanes, D. H. (2010). Normal hearing is required for the emergence of long-lasting inhibitory potentiation in cortex. Journal of Neuroscience, 30, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Suneja, S. K., & Potashner, S. J. (2007). Protein kinases regulate glycine receptor binding in brain stem auditory nuclei after unilateral cochlear ablation. Brain Research, 1135, 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Youssoufian, M., Oleskevich, S., & Walmsley, B. (2005). Development of a robust central auditory synapse in congenital deafness. Journal of Neurophysiology, 94, 3168–3180.

    Article  PubMed  CAS  Google Scholar 

  • Youssoufian, M., Couchman, K., Shivdasani, M. N., Paolini, A. G., & Walmsley, B. (2008). Maturation of auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse. Journal of Comparative Neurology, 506, 442–451.

    Article  PubMed  Google Scholar 

  • Yu, Y. F., Zhai, F., Dai, C. F., & Hu, J. J. (2011). The relationship between age-related hearing loss and synaptic changes in the hippocampus of C57BL/6J mice. Experimental Gerontology, 46, 716–722.

    Article  PubMed  Google Scholar 

  • Zettel, M. L., O’Neill, W. E., Trang, T. T., & Frisina, R. D. (2001). Early bilateral deafening prevents calretinin up-regulation in the dorsal cortex of the inferior colliculus of aged CBA/CaJ mice. Hearing Research, 158, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Zettel, M. L., O’Neill, W. E., Trang, T. T., & Frisina, R. D. (2003). The effects of early bilateral deafening on calretinin expression in the dorsal cochlear nucleus of aged CBA/CaJ mice. Hearing Research, 183, 57–66.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute on Deafness and Other Communication Disorders (DC009237 and DC011284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan H. Sanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanes, D.H. (2013). Synaptic and Cellular Consequences of Hearing Loss. In: Kral, A., Popper, A., Fay, R. (eds) Deafness. Springer Handbook of Auditory Research, vol 47. Springer, New York, NY. https://doi.org/10.1007/2506_2013_5

Download citation

Publish with us

Policies and ethics