Skip to main content

Application of the Density Variation Methodon Calciumcarbonate Nanoparticles

  • Conference paper
  • First Online:
Analytical Ultracentrifugation VIII

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 131))

Abstract

The simultaneous determination of particle size and density distributions by the so called density variation method via measurement of the same sample in H2O and D2O proved to be of great value for latex systems. However, many colloids of practical interest are inorganic or inorganic-organic hybrid colloids. Their density is usually much higher than that of the solvents so that the density variation method appears of limited applicability. In addition, these systems are usually charged – a complication, which was so far not yet considered in the theory for the density variation method. In this work, we apply this method to the determination of the particle size and density of CaCO3 precursor particles, which form superstructures in order to elucidate their crystal modification. Interestingly, the particle densities can be determined rather reasonably, whereas the particle size is much more influenced by the nonideality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Svedberg T, Rinde H (1924) J Am Chem Soc 46:2677

    Google Scholar 

  2. Rinde H (1928) PhD thesis, University of Upsala, Sweden

    Google Scholar 

  3. Nichols JB (1931) Physics 1:254

    Article  CAS  Google Scholar 

  4. Nichols JB, Kramer EO, Bailey ED (1932) J Phys Chem 36:326

    CAS  Google Scholar 

  5. Edelstein SJ, Schachman HK (1967) J Biol Chem 242(2)306:11

    Google Scholar 

  6. Mächtle W (1984) Makromol Chem 185:1025–1039

    Article  Google Scholar 

  7. Müller HG, Herrmann F (1995) Progr Colloid Polym Sci 99:114–119

    Google Scholar 

  8. Mächtle W (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. The royal society of chemistry, Cambridge, England, p 147

    Google Scholar 

  9. Mächtle W, Börger L (2005) Analytical Ultracentrifugation of Polymers and Nanoparticles Springer Laboratory Series, Springer Verlag, in press

    Google Scholar 

  10. Wang TX, Cölfen H, Antonietti M (2005) J Am Chem Soc 127(10):3246–3247

    CAS  Google Scholar 

  11. Cölfen H, Antonietti M (2005) Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  12. Albeck S, Weiner S, Addadi L (1996) Chem Europ J 2:278–284

    CAS  Google Scholar 

  13. Wang TX, Cölfen H, Antonietti M (2005) Chem Eur J submitted

    Google Scholar 

  14. Schuck P (2000) Biophys J 78:1606

    CAS  Google Scholar 

  15. Förster S, Schmidt M, Antonietti M (1990) Polymer 31(5):781–792

    Google Scholar 

  16. Budd P (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. The royal society of chemistry, Cambridge, England, p 593

    Google Scholar 

  17. Bolze J, Peng B, Dingenouts N, Panine P, Narayanan T, Ballauff M (2002) Langmuir 18:8364–8369

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Max-Planck-Society for financial support of this work and Dr. Tong Xin Wang for the preparation of the CaCO3/PSS hybrid colloids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Cölfen .

Editor information

Christine Wandrey Helmut Cölfen

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Cölfen, H., Völkel, A. Application of the Density Variation Methodon Calciumcarbonate Nanoparticles. In: Wandrey, C., Cölfen, H. (eds) Analytical Ultracentrifugation VIII. Progress in Colloid and Polymer Science, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_012

Download citation

Publish with us

Policies and ethics