Skip to main content

The role of reverse genetics systems in determining filovirus pathogenicity

  • Conference paper
Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence
  • 1846 Accesses

Summary

The family Filoviridae is comprised of two genera: Marburgvirus and Ebolavirus. To date minigenome systems have been developed for two Ebola viruses (Reston ebolavirus and Zaire ebolavirus [ZEBOV]) as well as for Lake Victoria marburgvirus, the sole member of the Marburgvirus genus. The use of these minigenome systems has helped characterize functions for many viral proteins in both genera and have provided valuable insight towards the development of an infectious clone system in the case of ZEBOV. The recent development of two such infectious clone systems for ZEBOV now allow effective strategies for experimental mutagenesis to study the biology and pathogenesis of one of the most lethal human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi L, Prehaud C, Di Bonito P, Mochi S, Bouloy M, Giorgi C (2001) Activity of Toscana and Rift Valley fever virus transcription complexes on heterologous templates. J Gen Virol 82: 781–785

    PubMed  CAS  Google Scholar 

  2. Baron M, Barrett T (1997) Rescue of rinderpest virus from cloned cDNA. J Virol 71: 1265–1271

    PubMed  CAS  Google Scholar 

  3. Bray M (2003) Defense against filoviruses used as biological weapons. Antiviral Res 57: 53–60

    Article  PubMed  CAS  Google Scholar 

  4. Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J (1998) A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis 178: 651–661

    Article  PubMed  CAS  Google Scholar 

  5. Bridgen A, Elliott RM (1996) Rescue of a segmented negative-stranded RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93: 15400–15404

    Article  PubMed  CAS  Google Scholar 

  6. Borio L, Inglesby T, Peters C, Schmaljohn A, Hughes J, Jahrling P. Ksiazek T, Johnson K, Meyerhoff A, Toole T, Ascher M, Bartlett J, Breman J, Eitzen E Jr, Hamburg M, Hauer J, Henderson D, Johnson R, Kwik G, Layton M, Lillibridge S, Nabel G, Osterholm M, Perl T, Russell P, Tonat K. Working Group on Civilian Biodefense (2002) Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287: 2391–2405

    Article  PubMed  Google Scholar 

  7. Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73: 251–259

    PubMed  CAS  Google Scholar 

  8. Collins P, Hill M, Camargo E, Grosfeld H, Chanock R, Murphy B (1995) Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci USA 92: 11563–11567

    Article  PubMed  CAS  Google Scholar 

  9. Connolly BM, Steele KE, Davis KJ, Geisbert TW, Kell WM, Jaax NK, Jahrling PB (1999) Pathogenesis of experimental Ebola virus infection in guinea pigs. J Infect Dis 179[Suppl] 1: 203–217

    Google Scholar 

  10. Conzelmann KK (1996) Genetic manipulation of non-segmented negative-stranded RNA viruses. J Gen Virol 77: 381–389

    Article  PubMed  CAS  Google Scholar 

  11. Conzelmann KK (1998) Non-segmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Ann Rev Genet 32: 123–162

    Article  PubMed  CAS  Google Scholar 

  12. Conzelmann KK, Schnell M (1994) Rescue of synthetic genome RNA analogs of rabies virus by plasmid-encoded proteins. J Virol 68: 713–719

    PubMed  CAS  Google Scholar 

  13. Dimock K, Collins PL (1993) Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3. J Virol 67: 2772–2778

    PubMed  CAS  Google Scholar 

  14. Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, Kahnt J, Stroher U, Klenk HD, Volchkov V (2004) Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO 23: 2175–2184

    Article  CAS  Google Scholar 

  15. Dunn EF, Pritlove DC, Jin H, Elliott RM (1995) Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211: 133–143

    Article  PubMed  CAS  Google Scholar 

  16. Durbin AP, Siew JW, Murphy BR, Collins PL (1997) Minimum protein requirements for transcription and RNA replication of a minigenome of human parainfluenza virus type 3 and evaluation of the rule of six. Virology 234: 74–83

    Article  PubMed  CAS  Google Scholar 

  17. Ebihara H, Takada A, Kobasa D, Feldmann H, Theriault S, Bray M, Kawaoka Y (2004) Genetic determinants of mouse-adaptation of Ebola Zaire virus. Annual Meeting of the American Society for Virology Montreal, Quebec, Canada p 133

    Google Scholar 

  18. Feldmann H, Geisbert TW, Jahrling PB, Klenk HD, Netesov SV, Peters CJ, Sanchez A, Swanepoel R, Volchkov VE (2004) Filoviridae. Virus Taxonomy, VIIIth Report of the ICTV. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Elsevier/Academic Press, London, pp 645–653

    Google Scholar 

  19. Feldmann H, Kiley MP (1999) Classification, structure, and replication of filoviruses. Curr Top Microbiol Immunol 235: 1–21

    PubMed  CAS  Google Scholar 

  20. Feldmann H, Volchkov VE, Volchkova VA, Klenk HD (1999) The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol 15: 159–169

    CAS  Google Scholar 

  21. Feldmann H, Volchkov VE, Volchkova VA, Stroher U, Klenk HD (2001) Biosynthesis and role of filoviral glycoproteins. J Gen Virol 82: 2839–2848

    PubMed  CAS  Google Scholar 

  22. Feldmann H, Will C, Schikore M, Slenczka W, Klenk HD (1991) Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182: 353–356

    Article  PubMed  CAS  Google Scholar 

  23. Flick K, Hooper J, Schmaljohn C, Pettersson R, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306: 219–224

    Article  PubMed  CAS  Google Scholar 

  24. Flick R, Flick K, Feldmann H, Elgh F (2003) Reverse genetics for Crimean-Congo hemorrhagic fever virus. J Virol 77: 5997–6006

    Article  PubMed  CAS  Google Scholar 

  25. Flick R, Pettersson RF (2001) Reverse gentics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75: 1643–1655

    Article  PubMed  CAS  Google Scholar 

  26. Fodor E, Devenish L, Engelhardt OG, Palese P, Browniee GG, Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73: 9679–9682

    PubMed  CAS  Google Scholar 

  27. Gallaher WR (1996) Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell (letter) 85: 477–478

    Article  PubMed  CAS  Google Scholar 

  28. Garcin D, Pelet T, Calain P, Roux L, Curran J, Kolakofsky D (1995) A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO J 14: 6087–6094

    PubMed  CAS  Google Scholar 

  29. Geisbert TW, Jahrling PB (1995) Differentiation of filoviruses by electron microscopy. Virus Res 39: 129–150

    Article  PubMed  CAS  Google Scholar 

  30. Groseth A, Feldmann H, Theriault S, Mehmetoglu G, Flick R (2005)An RNA Polymerase I-Driven Minigenome System for Reston ebolavirus. J Virol 79: 4425–4433

    Article  PubMed  CAS  Google Scholar 

  31. Groseth A, Ströher U, Theriault S, Feldmann H (2002) Molecular characterization of an isolate from the 1989/90 epizootic of Ebola Reston virus among imported macaques. Virus Res 87: 155–162

    Article  PubMed  CAS  Google Scholar 

  32. Grosfeld H, Hill MG, Collins PL (1995) RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol 69: 5677–5686

    PubMed  CAS  Google Scholar 

  33. He B, Paterson R, Ward C, Lamb R (1997) Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 237: 249–260

    Article  PubMed  CAS  Google Scholar 

  34. Hoffmann EG, Webster RG (2000) Unidirectional RNA polymerase I — polymerase II transcription systems for the generation of influenza A virus from eight plasmids. J Gen Virol 81: 2843–2847

    PubMed  CAS  Google Scholar 

  35. Ito H, Watanabe S, Sanchez A, Whitt M, Kawaoka Y (1999) Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 73: 8907–8912

    PubMed  CAS  Google Scholar 

  36. Ito H, Watanabe S, Takada A, Kawaoka Y (2001) Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75: 1576–1580

    Article  PubMed  CAS  Google Scholar 

  37. Kato A, Sakai Y, Shioda T, Kondo T, Nakanishi M, Nagai Y (1996) Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes Cells 1: 569–579

    Article  PubMed  CAS  Google Scholar 

  38. Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2: 39–43

    Article  PubMed  CAS  Google Scholar 

  39. Lawson ND, Stillmann EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 92: 4477–4481

    Article  PubMed  CAS  Google Scholar 

  40. Lee K, Novella I, Teng M, Oldstone M, de La Torre J (2000) NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J Virol 74: 3470–3477

    Article  PubMed  CAS  Google Scholar 

  41. Lee K, Perez M, Pinschewer D, de la Torre J (2002) Identification of the lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA analogs into LCMV-like particles. J Virol 76: 6393–6397

    Article  PubMed  CAS  Google Scholar 

  42. Lopez N, Jacamo R, Franze-Fernandez MT (2001) Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J Virol 75: 12241–12251

    Article  PubMed  CAS  Google Scholar 

  43. Lopez N, Muller R, Prehaud C, Bouloy M (1995) The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69: 3972–3979

    PubMed  CAS  Google Scholar 

  44. Luytjes W, Krystal M, Enami M, Pavin JD, Palese P (1989) Amplication, expression, and packaging of foreign genes by influenza virus. Cell 59: 1107–1113

    Article  PubMed  CAS  Google Scholar 

  45. Modrof J, Muhlberger E, Klenk HD, Becker S (2002) Phosphorylation of VP30 impairs Ebola virus transcription. J Biol Chem 277: 33099–33104

    Article  PubMed  CAS  Google Scholar 

  46. Moyer SA (1989) Replication of the genome RNAs of defective interfering particles of vesicular stomatitis and Sendai viruses using heterologous viral proteins. Virology 172: 341–345

    Article  PubMed  CAS  Google Scholar 

  47. Muhlberger E, Lotfering B, Klenk HD, Becker S (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72: 8756–8764

    PubMed  CAS  Google Scholar 

  48. Muhlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73: 2333–2342

    PubMed  CAS  Google Scholar 

  49. Muhlberger E (2004) Genome organization, replication and transcription of filoviruses. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England, pp 1–26

    Google Scholar 

  50. Murphy FA, van der Groen G, Whitfield SG, Lange JV (1978) Ebola and Marburg virus morphology and taxonomy. In: Pattyn SR (ed) Ebola virus hemorrhagic fever, 1st edn. Elsevier/North-Holland, Amsterdam, pp 61–84

    Google Scholar 

  51. Nagai Y, Kato A (1999) Paramyxovirus reverse genetics is coming of age. Microbiol Immunol 43: 613–624

    PubMed  CAS  Google Scholar 

  52. Neumann G, Feldmann H, Watanabe S, Lukashevich I, Kawaoka Y (2002) Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 76: 406–410

    Article  PubMed  CAS  Google Scholar 

  53. Neumann G, Noda T, Takada A, Jasenosky LD, Kawaoka Y (2004) Roles of filoviral matrix-and glycoproteins in the viral life cycle. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England pp 137–170

    Google Scholar 

  54. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E, Hobom G, Kawaoka Y (1999) Generation of influenza A virus entirely from cloned cDNAs Proc Natl Acad Sci USA 96: 9345–9350

    Article  PubMed  CAS  Google Scholar 

  55. Neumann G, Whitt MA, Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA-what have we learned? J Gen Virol 83: 2635–2665

    PubMed  CAS  Google Scholar 

  56. Neumann G, Zobel A, Hobom G (1994) RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202: 477–479

    Article  PubMed  CAS  Google Scholar 

  57. Parks CL, Lerch RA, Walpita P, Sidhu MS, Udem SA (1999) Enhanced measles virus cDNA rescue and gene expression after heat shock. J Virol 73: 3560–3566

    PubMed  CAS  Google Scholar 

  58. Pattnaik AK, Wertz GW (1990) Replication and amplification of defective interfering particles RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. J Virol 64: 2948–2957

    PubMed  CAS  Google Scholar 

  59. Pelet T, Delenda C, Gubbay O, Garcin D, Kolakofsky D (1995) Partial characterization of a Sendai virus replication promoter and the rule of six. Virology 224: 405–414

    Article  Google Scholar 

  60. Peters CJ, Muller G, Slenczka W (1971) Morphology, development, and classification of Marburg virus. In: Martini GA, Siefert R (eds) Marburg virus disease, 1st edn. Springer, Berlin Heidelberg New York, pp 68–83

    Google Scholar 

  61. Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned cDNA. EMBO J 14: 5773–5784

    PubMed  CAS  Google Scholar 

  62. Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214: 916–919

    PubMed  CAS  Google Scholar 

  63. Roberts A, Kretzschmar E, Perkins AS, Forman J, Price R, Buonocore L, Kawaoka Y, Rose JK (1998) Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 72: 4704–4711

    PubMed  CAS  Google Scholar 

  64. Roberts A, Buonocore L, Price R, Forman J, Rose JK (1999) Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 73: 3723–3732

    PubMed  CAS  Google Scholar 

  65. Ruiz-Aguello MB, Goni FM, Pereira FB, Nieva JL (1998) Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J Virol 72: 1775–1781

    Google Scholar 

  66. Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93: 3602–3607

    Article  PubMed  CAS  Google Scholar 

  67. Sanchez A, Khan A, Zaki S, Nabel G, Ksiazek T, Peters C (2001) “Filoviridae” and Ebola Viruses. In: Knipe DM, Howley PM (eds) Field’s Virology 4th edn., volume 1. Lippincott Williams and Wilkins, Philadelphia, pp 1279–1304

    Google Scholar 

  68. Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6442–6447

    PubMed  CAS  Google Scholar 

  69. Schneider U, Ohnemus A, Schwemmle M, Staeheli P (2004) Rescue of recombinant Borna disease viruses from cloned cDNA: regulatory regions determine viral virulence. Annual Meeting of the American Society for Virology Montreal, Quebec, Canada, p 146

    Google Scholar 

  70. Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13: 4195–4203

    PubMed  CAS  Google Scholar 

  71. Stillmann EA, Rose JK, Whitt MA (1995) Replication and amplification of novel vesicular stomatitis virus minigenomes encoding viral structural proteins. J Virol 69: 2946–2953

    Google Scholar 

  72. Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 94: 14764–14769

    Article  PubMed  CAS  Google Scholar 

  73. Taniguchi T, Palmieri M, Weissmann C (1978) QB DNA containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 247: 223–228

    Article  Google Scholar 

  74. Theriault S, Groseth A, Neumann G, Kawaoka Y, Feldmann H (2004) Rescue of Ebola virus from cDNA using heterologous support proteins. Virus Res 106: 43–50

    Article  PubMed  CAS  Google Scholar 

  75. Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214: 421–430

    Article  PubMed  CAS  Google Scholar 

  76. Volchkov VE, Feldmann H, Volchkova VA, Klenk HD (1998) Processing of the Ebola virus glycoprotein by the proprotein convertases. Proc NatlAcad Sci USA 95: 5762–5767

    Article  CAS  Google Scholar 

  77. Volchkov VE, Volchkova VA, Dolnik O, Feldmann H, Klenk HD (2004) Structural and functional polymorphism of the glycoprotein of filoviruses. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England, pp 59–90

    Google Scholar 

  78. Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291: 1965–1969

    Article  PubMed  CAS  Google Scholar 

  79. Volchkov VE, Volchkova VA, Slenczka W, Klenk HD, Feldmann H (1998) Release of viral glycoproteins during Ebola virus infection. Virology 245: 110–119

    Article  PubMed  CAS  Google Scholar 

  80. Volchkov VE, Volchkova VA, Ströher U, Becker S, Dolnik O, Cieplik M, Garten W, Klenk HD, Feldmann H (2000) Proteolytic processing of Marburg virus glycoprotein. Virology 268: 1–6

    Article  PubMed  CAS  Google Scholar 

  81. Volchkova VA, Feldmann H, Klenk HD, Volchkov VE (1998) The nonstructural small glycoprotein of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250: 408–414

    Article  PubMed  CAS  Google Scholar 

  82. Volchkova VA, Klenk HD, Volchkov VE (1999) Δ-peptide is the carboxy-terminal cleavage fragment of the non-structural small glycoprotein sGP of Ebola virus. Virology 265: 164–171

    Article  PubMed  CAS  Google Scholar 

  83. Watanabe S, Takada A, Watanabe T, Ito H, Kida H, Kawaoka Y (2000) Functional importance of the coiled-coil of the Ebola virus glycoprotein. J Virol 74: 10194–10201

    Article  PubMed  CAS  Google Scholar 

  84. Weik M, Modrof J, Klenk HD, Becker S, Muhlberger E (2002) Ebola virus VP3O-mediated transcription is regulated by RNA secondary structure formation. J Virol 76: 8532–8539

    Article  PubMed  CAS  Google Scholar 

  85. Weissenhorn W (2004) Structure of viral proteins. In: Klenk HD, Feldmann H (eds) Ebola and Marburg viruses molecular and cellular biology. Horizon Bioscience, Wymondham, Norfolk, England pp 27–58

    Google Scholar 

  86. Wool-Levis RJ, Bates P (1999) Endoproteolytic processing of the Ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 73: 1419–1426

    Google Scholar 

  87. Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, Nabel GJ (1998) Distinct cellular interaction of secreted and transmembrane Ebola virus glycoproteins. Science 279: 1034–1036

    Article  PubMed  CAS  Google Scholar 

  88. Yu Q, Hardy RW, Wertz GW (1995) Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol 69: 2412–2419

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag/Wien

About this paper

Cite this paper

Theriault, S., Groseth, A., Artsob, H., Feldmann, H. (2005). The role of reverse genetics systems in determining filovirus pathogenicity. In: Peters, C.J., Calisher, C.H. (eds) Infectious Diseases from Nature: Mechanisms of Viral Emergence and Persistence. Springer, Vienna. https://doi.org/10.1007/3-211-29981-5_13

Download citation

Publish with us

Policies and ethics