Skip to main content

Gravitons in de sitter space

  • Conference paper
  • First Online:
Field Theory, Quantum Gravity and Strings II

Part of the book series: Lecture Notes in Physics ((LNP,volume 280))

Abstract

What has been shown in this talk is that the graviton propagator in de Sitter space is OK. If one makes a bad choice of gauge (-fixing term) then the propagator is infra-red divergent. However this is not a problem. You can either make a better choice of gauge (of which there are an infinite number), for which the propagator is completely, finite, or else you can go right ahead and use the infra-red divergent one. We demonstrated that it doesn't matter. Gauge-invariance is the over-riding principle, and it ensures that even if the propagator has an infra-red divergence, the physical scattering amplitudes are finite.

A more detailed discussion of these points can also be found in an earlier published paper |20|. The complete closed form for the graviton propagator with ε = ½ has also been found |22|. Finally a closed form in the de Sitter -non-invariant gauge (1.1) has been recently obtained |26|. This form applies to any spatially-flat Robertson-Walker model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (Freedman, San Francisco, 1973) p. 410.

    Google Scholar 

  2. I. Antoniadis, J. Iliopoulos, T.A. Tomaras, Nucl.Phys. B261 (1985) 157.

    Google Scholar 

  3. I. Antoniadis and N.C. Tsamis, Phys.Lett. 144B (1984) 55.

    Google Scholar 

  4. E. Baum, Phys.Lett. 133B (1983) 185.

    Google Scholar 

  5. G. Gibbons, S.W. Hawking and S.T.C. Siklos, The Very Early Universe, Proceedings of the Nuffield Workshop (Cambridge UP, 1983).

    Google Scholar 

  6. R. Brandenburger, Rev.Mod.Phys. 57 (1985) 1.

    Google Scholar 

  7. B. deWit and R. Gastmans, Nucl.Phys. B128 (1985) 1.

    Google Scholar 

  8. N.P. Myhrvold, Phys.Lett. 132B (1983) 308.

    Google Scholar 

  9. N.P. Myhrvold, Phys.Rev. D28 (1983) 2439.

    Google Scholar 

  10. E. Mottola, Phys.Rev. D31 (1985) 754.

    Google Scholar 

  11. E. Mottola, Phys.Rev. D33 (1986) 1616.

    Google Scholar 

  12. E. Mottola, NSF-ITP 85-33 preprint UCSB. E. Mottola and P. Mazur, NSF-ITP 85-153 preprint UCSB.

    Google Scholar 

  13. S. Wada and T. Azuma, Phys.Lett. 132B (1983) 313.

    Google Scholar 

  14. P. Anderson, University of Florida at Gainesville preprint, 1985.

    Google Scholar 

  15. Gary T. Horowitz, Phys.Rev. D21 (1980) 1445.

    Google Scholar 

  16. G.W. Gibbons and S.W. Hawking, Phys.Rev. D15 (1977) 2738.

    Google Scholar 

  17. B. Allen, Ann.Phys. 161 (1985) 152.

    Google Scholar 

  18. B. Allen, Nucl.Phys. B226 (1983) 228.

    Google Scholar 

  19. S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Spacetime (Cambridge UP, 1980).

    Google Scholar 

  20. O. Nachtmann, Commun.Math.Phys. 6 (1967) 1.

    Google Scholar 

  21. N.A. Chernikov and E.A. Tagirov, Ann.Inst. Henri Poincaré IX (1968) 109.

    Google Scholar 

  22. J. Géhéniau and Ch. Schomblond, Bull.Cl.Sci., V.Ser.Acad.R.Belg. 54 (1968) 1147.

    Google Scholar 

  23. E.A. Tagirov, Ann.Phys. 76 (1973) 561.

    Google Scholar 

  24. P. Candelas and D.J. Raine, Phys.Rev. D12 (1975) 965.

    Google Scholar 

  25. Ch. Schomblond and P. Spindel, Ann.Inst. Henri Poincaré XXV (1976) 67.

    Google Scholar 

  26. T.S. Bunch and P.C.W. Davies, Proc.Roy.Soc.Lond. A360 (1978) 117.

    Google Scholar 

  27. B. Allen, Phys.Rev. D32 (1985) 3136.

    Google Scholar 

  28. B. Allen and T. Jacobson, Commun.Math.Phys. 103 (1986) 669.

    Google Scholar 

  29. B. Allen and C.A. Lütken, Commun.Math.Phys. 106 (1986) 201.

    Google Scholar 

  30. O. Nachtman in reference 11.

    Google Scholar 

  31. O. Nachtman, Z. Phys. 208 (1968) 113.

    Google Scholar 

  32. O. Nachtman, Sitzungsber. Oesterr.Akad.Wiss.Math.Naturwiss.Kl. 167 (1968) 363.

    Google Scholar 

  33. G.W. Gibbons and M.J. Perry, Proc.R.Soc.Lond. A358 (1978) 467.

    Google Scholar 

  34. I. Antoniadis, J. Iliopoulos and T.N. Tomaras, Phys.Rev.Lett. 56 (1986) 1319.

    Google Scholar 

  35. C. Itzykson and J.B. Zuber, Quantum Field Theory (McGraw-Hill, NY, 1980).

    Google Scholar 

  36. S. Coleman and E.J. Weinberg, Phys.Rev. D7 (1973) 1888.

    Google Scholar 

  37. This of course is the infinitesimal form of the gauge transformation. To generate finite transformations we have to go to higher order in V.

    Google Scholar 

  38. The Fadeev-Popov determinantIhabI does not depend upon hab at one-loop, and thus does not contribute to the tree-level propagator. We have therefore left this Jacobian out of the formula for Gaba′b′.

    Google Scholar 

  39. B. Allen and T. Jacobson in reference 11.

    Google Scholar 

  40. S.M. Christensen and M.J. Duff, Nucl.Phys. B170 (1980) 480.

    Google Scholar 

  41. N.H. Barth and S.M. Christensen, Phys.Rev. D28 (1983) 1876.

    Google Scholar 

  42. B. Allen, Phys. Rev. D34 (1986) 3670.

    Google Scholar 

  43. B. Allen in reference 19.

    Google Scholar 

  44. S.L. Adler, Phys.Rev. D6 (1972) 3445, D8 (1973) 2400.

    Google Scholar 

  45. R. Raczka, N. Limic and J. Nierderle, J.Math.Phys. 7 (1966) 1861, 7 (1966) 2026, 8 (1967) 1079.

    Google Scholar 

  46. G.W. Gibbons and M.J. Perry, Nucl.Phys. B146 (1978) 90.

    Google Scholar 

  47. S.M. Christensen, M. Duff, G.W. Gibbons, and M.J. Perry, Phys.Rev.Lett. 45 (1980)161.

    Google Scholar 

  48. A. Higuchi, Yale Preprint YTP 85-22 (1985).

    Google Scholar 

  49. A. Chodos, E. Meyers, Ann.Phys. (NY) 156 (1984) 412.

    Google Scholar 

  50. M.A. Rubin and C.R. Ordonez, J.Math.Phys. 25 (1984) 2888, 26 (1985) 65.

    Google Scholar 

  51. B. Allen and M. Turyn, The graviton propagator in maximally symmetric spacer, Tufts University preprint (1986).

    Google Scholar 

  52. R. Wald, Phys.Rev. D17 (1978) 1477.

    Google Scholar 

  53. R. Wald, Commun.Math.Phys. 54 (1977) 1.

    Google Scholar 

  54. S.A. Fulling, M. Sweeny and R. Wald, Commun.Math.Phys. 63 (1978) 259.

    Google Scholar 

  55. In fact the mode that we have labeled ø1 is degenerate. There are five such modes with the same eigenvalue. If the four-sphere is X2 1 +... + X2 5 = 1 then the modes ø il are proportional to the i'th coordinate Xi.

    Google Scholar 

  56. The boundary terms can be shown to vanish in the Lorentzian spacetime case-see reference 20.

    Google Scholar 

  57. B. Allen, The graviton propagator in homogeneous and isotropic spacetimes, Tufts University Preprint TUTP 86-14 (1986). (submitted to Nucl. Phys.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. J. de Vega N. Sánchez

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Allen, B. (1987). Gravitons in de sitter space. In: de Vega, H.J., Sánchez, N. (eds) Field Theory, Quantum Gravity and Strings II. Lecture Notes in Physics, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17925-9_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-17925-9_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17925-2

  • Online ISBN: 978-3-540-47934-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics