Skip to main content

Detection of Landmines Using Nuclear Quadrupole Resonance (NQR): Signal Processing to Aid Classification

  • Conference paper
Climbing and Walking Robots

Abstract

Nuclear quadrupole resonance (NQR) is a sensor technology that measures a signature unique to the explosive contained in the mine, thus providing a means of efficiently detecting landmines. Unfortunately, the measured signals are inherently weak and therefore detection times are currently too long (especially for TNT-based landmines) to implement in a man-portable detection system. However, the NQR hardware is light enough to be integrated into a robot based system. This paper investigates several power spectrum estimation algorithms applied to NQR signals in order to distinguish between data containing signals from explosive and data that does not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Somasundaram, S. D., Smith, J. A. S., Althoefer, K., and Seneviratne, L. D. (2004) Detection of Landmines Using Nuclear Quadrupole Resonance (NQR): An Overview. HUDEM Conference paper.

    Google Scholar 

  2. Garroway, A. N., Buess, M. L., Miller, J. B., Suits, B. H., Hibbs, A. D., Barrall, A. G., Matthews, R., and Burnett, L. J. (June 2001) Remote Sensing by Nuclear Quadrupole Resonance. IEEE Trans. Geoscience and Remote Sensing, vol. 39, no. 6, pp. 1108–1118.

    Article  Google Scholar 

  3. Smith, J. A. S. (1995) Nitrogen-14 Quadrupole Resonance Detection of RDX and HMX Based Explosives. European Convention on Security and Detection, vol. 408, pp. 288–292.

    Article  Google Scholar 

  4. Rowe, M. D. and Smith, J. A. S. (1996) Mine Detection by Nuclear Quadrupole Resonance. The Detection of Abandoned Landmines (IEE) Eurel, vol. 43, pp. 62–66.

    Google Scholar 

  5. Deas, R. M., Burch, I. A., and Port, D. M. (2002) The Detection of RDX and TNT Mine like Targets by Nuclear Quadruple Resonance. In Detection and Remediation Technologies for Mines and Minelike Targets, Proc. of SPIE, vol. 4742, pp. 482–489.

    Google Scholar 

  6. Stoica, P. and Moses, R. (1997) Introduction to Spectral Analysis. Prentice Hall, New Jersey.

    MATH  Google Scholar 

  7. Tan, Y., Tantum, S. L., and Collins, L. M. (2002) Landmine Detection with Nuclear Quadrupole Resonance. Geoscience and Remote Sensing Symposium, vol. 3, pp. 1575–1578.

    Google Scholar 

  8. Hayes, M. H. (1996) Statistical Digital Signal Processing and Modeling. John Wiley and Sons, Georgia.

    Google Scholar 

  9. Cervantes, H. R. and Rabban, S. R. (1999) Application of autoregressive spectral estimator in 2D NQR nutation spectroscopy. Solid State Communications, vol. 110, pp. 215–220.

    Article  Google Scholar 

  10. Suits, B. H. and Garroway, A. N. (2003) Optimising surface coils and the self-shielded gradiometer. Journal of Applied Physics, vol. 94, pp. 4170–4178.

    Article  Google Scholar 

  11. Jiang, Y., Stoica, P., and Li, J. (2004) Array Signal Processing in the Known Waveform and Steering Vector Case. IEEE Trans. Signal Processing, vol. 52, no. 1, pp. 23–35.

    Article  MathSciNet  Google Scholar 

  12. Malcolm-Lawes, D. J., Mallion, S., Rowe, M. D., and Smith, J. A. S. Time-Domain Data Analysis of NQR Response. Patent application number 9915842.0.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Somasundaram, S.D., Althoefer, K., Smith, J.A.S., Seneviratne, L.D. (2006). Detection of Landmines Using Nuclear Quadrupole Resonance (NQR): Signal Processing to Aid Classification. In: Tokhi, M.O., Virk, G.S., Hossain, M.A. (eds) Climbing and Walking Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26415-9_100

Download citation

  • DOI: https://doi.org/10.1007/3-540-26415-9_100

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26413-2

  • Online ISBN: 978-3-540-26415-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics