Skip to main content

Preconditioning Techniques for the Bidomain Equations

  • Conference paper
Domain Decomposition Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 40))

Summary

In this work we discuss parallel preconditioning techniques for the bidomain equations, a non-linear system of partial differential equations which is widely used for describing electrical activity in cardiac tissue. We focus on the solution of the linear system associated with the elliptic part of the bidomain model, since it dominates computation, with the preconditioned conjugate gradient method. We compare different parallel preconditioning techniques, such as block incomplete LU, additive Schwarz and multigrid. The implementation is based on the PETSc library and we report results for a 16-node HP cluster. The results suggest the multigrid preconditioner is the best option for the bidomain equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, B. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 — Revision 2.1.5, Argonne National Laboratory, 2002.

    Google Scholar 

  • X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM Journal on Scientific Computing, 21: 239–247, 1999.

    Article  MathSciNet  Google Scholar 

  • J. Eason and R. Malkin. A simulation study evaluating the performance of high-density electrode arrays on myocardial tissue. IEEE Trans Biomed Eng, 47(7):893–901, 2000.

    Article  Google Scholar 

  • A. Hodgkin and A. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117:500–544, 1952.

    Google Scholar 

  • N. Hooke, C. Henriquez, P. Lanzkron, and D. Rose. Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math Biosci, 120(2):127–45, 1994.

    Article  MathSciNet  Google Scholar 

  • J. Keener and K. Bogar. A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos, 8(1):234–241, 1998.

    Article  Google Scholar 

  • J. Keener and J. Sneyd. Mathematical physiology. Springer, 1998.

    Google Scholar 

  • W. Krassowska and J. Neu. Effective boundary conditions for syncytial tissues. IEEE Trans. on Biomed. Eng., 41:143–150, 1994.

    Article  Google Scholar 

  • D. Latimer and B. Roth. Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans. on Biomed. Eng., 45(12): 1449–1458, 1998.

    Article  Google Scholar 

  • D. Lindblad, C. Murphey, J. Clark, and W. Giles. A model of the action potential and the underlying membrane currents in a rabbit atrial cell. The American Physiological Society, (0363-6125):H1666–H1696, 1996.

    Google Scholar 

  • Message Passing Interface library. MPI, a message-passing interface standard. Int. J. Supercomp., 8:159–416, 1994.

    Google Scholar 

  • L. Pavarino and P. Franzone. Parallel solution of cardiac reaction-diffusion models. In R. Kornhuber, R. Hoppe, D. Keyes, J. Periaux, O. Pironneau, and J. Xu, editors, Procedings of the 15th International Conference on Domain Decomposition Methods, Lecture Notes in Computational Science and Engineering. Springer, 2004.

    Google Scholar 

  • M. Pennacchio and V. Simoncini. Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process. Journal of Computational and Applied Mathematics, 145(1):49–70, 2002. ISSN 0377-0427.

    Article  MathSciNet  Google Scholar 

  • J. Pormann. Computer simulations of cardiac electrophysiology. In Proceedings of SC2000, 2000.

    Google Scholar 

  • H. Saleheen and Kwong. A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues. IEEE Trans. on Biomed. Eng., 45(1):15–25, 1998.

    Article  Google Scholar 

  • K. Skouibine and W. Krassowska. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function. Annals of Biomedical Engineering, 28:772–780, 2000.

    Article  Google Scholar 

  • G. Strang. On the construction and comparison of difference scheme. SIAM Journal on Numerical Analysis, 5:506–517, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Street and R. Plonsey. Propagation in cardiac tissue adjacent to connective tissue: Two-dimensional modeling studies. IEEE Transactions on Biomedical Engineering, 46:19–25, 1999.

    Article  Google Scholar 

  • J. Sundnes, G. Lines, and A. Tveito. Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Math Biosci, 172(2): 55–72, 2001.

    Article  MathSciNet  Google Scholar 

  • E. Vigmond, F. Aguel, and N. Trayanova. Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans Biomed Eng, 49(11):1260–9, 2002.

    Article  Google Scholar 

  • R. Weber dos Santos. Modelling cardiac electrophysiology. PhD thesis, Federal University of Rio de Janeiro, Mathematics dept., Rio de Janeiro, Brazil, 2002.

    Google Scholar 

  • R. Weber dos Santos and F. Dickstein. On the influence of a volume conductor on the orientation of currents in a thin cardiac tissue. In I. Magnin, J. Montagnat, P. Clarysse, J. Nenonen, and T. Katila, editors, Lecture Notes in Computer Science, pages 111–121. Springer, Berlin, 2003.

    Google Scholar 

  • R. Weber dos Santos, U. Steinhoff, E. Hofer, D. Sanchez-Quintana, and H. Koch. Modelling the electrical propagation in cardiac tissue using detailed histological data. Biomedizinische Technik, 2003.

    Google Scholar 

  • C. Yung. Application of a stiff, operator-splitting scheme to the computational modeling of electrical propagation of cardiac ventricles. Engineering dept., Johns Hopkins University, Maryland, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dos Santos, R.W., Plank, G., Bauer, S., Vigmond, E. (2005). Preconditioning Techniques for the Bidomain Equations. In: Barth, T.J., et al. Domain Decomposition Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26825-1_60

Download citation

Publish with us

Policies and ethics