Skip to main content

Translation and Replication of FMDV RNA

  • Chapter
Foot-and-Mouth Disease Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 288))

Abstract

Foot-and-mouth disease virus (FMDV) RNA is infectious. After delivery of the RNA (about 8.3 kb) into the cytoplasm of a cell, the RNA must initially be translated to produce the viral proteins required for RNA replication and for the packaging of the RNA into new virions. Subsequently there has to be a switch in the function of the RNA; translation has to be stopped to permit RNA replication. The signals required for the control of the different roles of viral RNA must be included within the viral RNA sequence. Many cellular proteins interact with the viral RNA and probably also with the virus-encoded proteins. The functions of different RNA elements within the viral RNA and the various virus-encoded proteins in determining the efficiency of virus replication are discussed. Unique aspects of FMDV RNA translation and replication are emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams C., King A.M.Q. and Belsham G.J. 1995. Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. J. Gen. Virol. 76:3089–3098

    PubMed  Google Scholar 

  • Ali, I.K., McKendrick, L., Morley, S.J. and Jackson, R.J. 2001. Activity of the Hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J. Virol. 75:7854–7863

    Article  PubMed  Google Scholar 

  • Andino, R., Rieckhof, G.E. and Baltimore, D. 1990. A functional ribonucleoprotein complex forms around the 5’ end of poliovirus RNA. Cell 63:369–380

    Article  PubMed  Google Scholar 

  • Belsham, G.J. and Bostock, C.J. 1988. Studies on the infectivity of foot-and-mouth disease virus RNA using microinjection. J. Gen. Virol. 69:265–274

    PubMed  Google Scholar 

  • Belsham, G.J. and Brangwyn, J.K. 1990. A region of the 5’ non-coding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells; interaction with the role of the L protease in translational control. J. Virol. 64:5389–5395

    PubMed  Google Scholar 

  • Belsham, G.J. 1992. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J. 11:1105–1110

    PubMed  Google Scholar 

  • Belsham, G.J. and Sonenberg, N. 1996. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol. Rev. 60:499–511

    PubMed  Google Scholar 

  • Belsham, G.J. and Jackson, R.J. 2000. Translation initiation on picornavirus RNA. In: ‘Translational Control of Gene Expression’ Monograph 39. Eds. N. Sonenberg, J.W.B. Hershey and M.B. Mathews. pp869–900. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Belsham, G.J. and Sonenberg, N. 2000. Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol. 8:330–335

    Article  PubMed  Google Scholar 

  • Belsham, G.J., McInerney, G.M. and Ross-Smith, N. 2000. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol. 74:272–280

    PubMed  Google Scholar 

  • Bienz, K., Egger, D., and Pasamontes, L. 1987. Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160:220–226

    Article  PubMed  Google Scholar 

  • Bienz, K., Egger, D., Troxler, M. and Pasamontes, L. 1990. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J. Virol. 64:1156–1163

    PubMed  Google Scholar 

  • Borman, A.M., Le Mercier, P., Girard, M. and Kean, K.M. 1997. Comparison of picornaviral IRES-driven internal initiation in cultured cells of different origins. Nucl. Acids Res. 25:925–932

    Article  PubMed  Google Scholar 

  • Borman, A.M. and Kean, K.M. 1997. Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation. Virology 237:129–136

    Article  PubMed  Google Scholar 

  • Brown, F., Newman, J., Stott, J., Porter, A., Frisby, D., Newton, C., Carey, N. and Fellner, P. 1974. Poly(C) in animal viral RNAs. Nature (London) 251:342–344

    Article  PubMed  Google Scholar 

  • Brown, E.A., Zajac, A.J. and Lemon, S.M. 1994. In vitro characterization of an internal ribosomal entry site (IRES) present within the 5’ nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J. Virol. 1994 68:1066–1074

    PubMed  Google Scholar 

  • Brown, C.C., Piccone, M.E., Mason, P.W., McKenna, T.S.C. and Grubman, M.J. 1996. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J. Virol. 70:5638–5641

    PubMed  Google Scholar 

  • Cao, X.M., Bergmann, I.E., Fullkrug, R. and Beck, E. 1995. Functional analysis of the two alternative translation initiation sites of foot-and-mouth-disease virus. J. Virol. 69:560–563

    PubMed  Google Scholar 

  • Chinsangaram, J., Piccone, M.E. and Grubman, M.J. 1999. Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of α/β interferon. J. Virol. 73:9891–9898

    PubMed  Google Scholar 

  • Chow, M., Newman, J.F.E., Filman, D., Hogle, J.M., Rowlands, D.J. and Brown, F. 1987. Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486

    Article  PubMed  Google Scholar 

  • Clarke, B.E., Brown, A.L., Currey, K.M., Newton, S.E., Rowlands, D.J. and Carroll, A.R. 1987. Potential secondary and tertiary structure in the genomic RNA of FMDV. Nucl. Acids Res. 15:7067–7079

    PubMed  Google Scholar 

  • Costa, M. and Michel, F. 1995. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 14:1276–1285

    PubMed  Google Scholar 

  • Crawford, N.M. and Baltimore, D. 1983. Genome-linked protein VPg of poliovirus is present as free VPg and VPgpUpU in poliovirus-infected cells. Proc. Natl. Acad. Sci. USA. 80:7452–7455

    PubMed  Google Scholar 

  • Curry, S., Abrams, C.C., Fry, E., Crowther, J.C., Belsham, G.J., Stuart, D.I. and King, A.M.Q. 1995. Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsids. J. Virol. 69:430–438

    PubMed  Google Scholar 

  • Devaney, M.A., Vakharia, V.N., Lloyd, R.E., Ehrenfeld, E. and Grubman, M.J. 1988. Leader protein of foot-and-mouth-disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol. 62:4407–4409

    PubMed  Google Scholar 

  • Doedens, J.R. and Kirkegaard, K. 1995. Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J. 14:894–907

    PubMed  Google Scholar 

  • Donnelly, M.L., Gani, D., Flint, M., Monaghan, S. and Ryan, M.D. 1997. The cleavage activities of aphthovirus and cardiovirus 2A proteins. J. Gen. Virol. 78:13–21

    PubMed  Google Scholar 

  • Donnelly, M.L.L., Luke, G., Mehrotra, A., Li, X., Hughes, L.E., Gani, G. and Ryan, M.D. 2001. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J. Gen. Virol. 82:1013–1025

    PubMed  Google Scholar 

  • Duke, G.M., Osorio, J.E. and Palmenberg, A.C. 1990. Attenuation of mengo-virus through genetic-engineering of the 5’ noncoding poly(C) tract. Nature 343:474–476

    Article  PubMed  Google Scholar 

  • Duque, H. and Palmenberg, A.C. 2001. Phenotypic characterization of three phylogenetically conserved stem-loop motifs in the mengovirus 3’ untranslated region. J. Virol. 75:3111–3120

    Article  PubMed  Google Scholar 

  • Escarmis, C., Toja, M., Medina, M. and Domingo, E. 1992. Modifications of the 5’ untranslated region of foot-and-mouth disease virus after prolonged persistence in cell culture. Virus Res. 26:113–125

    Article  PubMed  Google Scholar 

  • Escarmis, C., Dopazo, J., Davila, M., Palma, E.L. and Domingo, E. 1995. Large deletions in the 5'-untranslated region of foot-and-mouth-disease virus of serotype-C. Virus Res. 35:155–167

    Article  PubMed  Google Scholar 

  • Falk, M.M., Grigera, P.R., Bergmann, I.E., Zibert, A., Multhaup, G. and Beck, E. 1990. Foot-and-mouth-disease virus protease-3C induces specific proteolytic cleavage of host-cell histone-H3. J. Virol. 64:748–756

    PubMed  Google Scholar 

  • Fernandez-Miragall, O. and Martinez-Salas, F. 2003. Structured organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9:1333–1344

    Article  PubMed  Google Scholar 

  • Falk, M.M., Sobrino, F. and Beck, E. 1992. VPg-gene amplification correlates with infective particle formation in foot-and-mouth-disease virus J. Virol. 66:2251–2260

    Google Scholar 

  • Gamarnik, A.V. and Andino, R.. 1997. Two functional complexes formed by KH domain containing proteins with the 5’ noncoding region of poliovirus RNA. RNA 3:882–892

    PubMed  Google Scholar 

  • Gamarnik, A.V. and Andino, R. 1998. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12:2293–2304

    PubMed  Google Scholar 

  • Gerber, K., Wimmer, E. and Paul, A.V. 2001. Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis-replicating element in the coding sequence of 2Apro. J Virol. 75:10979–10990

    Article  PubMed  Google Scholar 

  • Gingras, A.C., Raught, B. and Sonenberg, N. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913–963

    Article  PubMed  Google Scholar 

  • Glaser, W., Cencic, R. and Skern, T. 2001. Foot-and-mouth disease virus Leader proteinase: involvement of C-terminal residues in self-processing and cleavage of eIF4GI. J. Biol. Chem. 276:35473–35481

    Article  PubMed  Google Scholar 

  • Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J.W., Barclay, W. and Evans, D.J. 2000. Identification of a cis-acting replication element within the poliovirus coding region. J. Virol. 74:4590–4600

    Article  PubMed  Google Scholar 

  • Gradi, A., Imataka, H., Svitkin, Y.V., Rom, E., Raught, B., Morino, S. and Sonenberg, N. 1998. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18:334–342

    PubMed  Google Scholar 

  • Gradi, A., Foeger, N., Strong, R., Svitkin, Y.V., Sonenberg, N., Skern, T., and Belsham, G.J. 2004. Cleavage of enkaryotic translation initiation factor 4GII within foot-and-mouth disease virus-effected cells: identification of the L-protease cleavage site in vitro. J. Virol. 78:3271–3278

    Article  PubMed  Google Scholar 

  • Grubman, M.J., Zellner, M., Bablanian, G., Mason, P.W. and Piccone, M.E. 1995. Identification of the active-site residues of the 3C proteinase of foot-and-mouth-disease virus. Virology 213:581–589

    Article  PubMed  Google Scholar 

  • Guarne, A., Tormo, J., Kirchweger, R., Pfistermueller, D., Fita, I. and Skern, T. 1998. Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J. 17:7469–7479

    Article  PubMed  Google Scholar 

  • Haghighat, A., Svitkin, Y., Novoa, I., Kuechler, E., Skern, T. and Sonenberg, N. 1996. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J. Virol. 70:8444–8450

    PubMed  Google Scholar 

  • Hahn, H. and Palmenberg. A.C. 1995. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J. Virol. 69:2697–2699

    PubMed  Google Scholar 

  • Hambidge, S.J. and Sarnow, P. 1992. Translational enhancement of the poliovirus 5’ noncoding region mediated by virus-encoded polypeptide 2A. Proc. Natl. Acad. Sci. USA. 89:10272–10276

    PubMed  Google Scholar 

  • Harris, T.J.R. and Brown, F. 1977. Biochemical analysis of a virulent and an avirulent strain of foot-and-mouth disease virus. J. Gen. Virol. 34:87–105

    PubMed  Google Scholar 

  • Herold, J. and Andino, R. 2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 7:581–591

    Article  PubMed  Google Scholar 

  • Hinton, T.M., Li, F. and Crabb, B.S. 2000. Internal ribosomal entry site-mediated translation initiation in equine rhinitis A virus: similarities to and differences from that of foot-and-mouth disease virus. J. Virol. 74:11708–11716

    Article  PubMed  Google Scholar 

  • Hinton, T., Ross-Smith, N., Warner, S., Belsham, G.J. and Crabb, B. 2002. Conservation of L and 3C proteinase activities across distantly related aphthoviruses. J. Gen. Virol. 83:3111–3121

    PubMed  Google Scholar 

  • Hobson, S.D., Rosenblum, E.S., Richards, O.C., Richmond, K., Kirkegaard, K., and Schultz S.C. 2001. Oligomeric structures of poliovirus polymerase are important for function. EMBO J 20:1153–1163

    Article  PubMed  Google Scholar 

  • Imataka, H., Gradi, A. and Sonenberg N. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17:7480–7489

    Article  PubMed  Google Scholar 

  • Irurzun, A., Perez, L. and Carrasco, L. 1992. Involvement of membrane traffic in the replication of poliovirus genomes: effects of brefeldin A. Virology 191:166–175

    Article  PubMed  Google Scholar 

  • Jang, S.K., Krausslich, H.G., Nicklin, M.J., Duke, G.M., Palmenberg, A.C. and Wimmer, E. 1998. A segment of the 5’ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:2636–2643

    Google Scholar 

  • Kaku, Y., Chard, L.S., Inoue, T. and Belsham, G.J. 2002. Unique characteristics of a picornavirus internal ribosome entry site from the Porcine Teschovirus-1 Talfan. J. Virol. 76:11721–11728

    Article  PubMed  Google Scholar 

  • Kaminski, A., Howell, M.T. and Jackson, R.J. 1990. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 9:3753–3759

    PubMed  Google Scholar 

  • Kaminski, A., Belsham, G.J. and Jackson, R.J. 1994. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J. 13:1673–1681

    PubMed  Google Scholar 

  • Kaminski, A. and Jackson, R.J. 1998. The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4:626–638

    Article  PubMed  Google Scholar 

  • King, A.M.Q., Sangar, D.V., Harris, T.J.R. and Brown F. 1980. Heterogeneity of the genome-linked protein of FMDV. J. Virol. 34:627–634

    PubMed  Google Scholar 

  • Kirchweger, R., Ziegler, E., Lamphear, B.J., Waters, D., Liebig, H.D., Sommergruber, W., Sobrino, F., Hohenadl, C., Blaas, D., Rhoads, R.E. and Skern, T. 1994. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4γ. J. Virol. 61:2711–2718

    Google Scholar 

  • Kolupaeva, V.G., Hellen, C.U.T. and Shatsky, I.N. 1996. Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. RNA 2:1199–1212

    PubMed  Google Scholar 

  • Kolupaeva, V.G., Pestova, T.V., Hellen, C.U.T. and Shatsky I.N. 1998. Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol. Chem. 273:18599–18604

    Article  PubMed  Google Scholar 

  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241

    Article  PubMed  Google Scholar 

  • Kuhn, R., Luz, N. and Beck, E. 1990. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J. Virol. 64:4625–4631

    PubMed  Google Scholar 

  • Lamphear, B.J., Yan, R.Q., Yang, F., Waters, D., Liebig, H.D., Klump, H., Kuechler, E., Skern, T. and R.E. Rhoads. 1993. Mapping the cleavage site in protein synthesis initiation factor eIF-4γ of the 2A proteases from human coxsackievirus and rhinovirus. J. Biol. Chem. 268:19200–19203

    PubMed  Google Scholar 

  • Li, W., Ross-Smith, N., Proud, C.G. and Belsham, G.J. 2001. Cleavage of translation initiation factor 4AI (eIF4AI) but not eIF4AII by foot-and-mouth disease virus 3C protease: determination of the eIF4AI cleavage site. FEBS Lett. 507:1–5

    Article  PubMed  Google Scholar 

  • López de Quinto, S. and Martínez-Salas, E. 1997. Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J. Virol. 71:4171–4175

    PubMed  Google Scholar 

  • López de Quinto, S. and Martinez-Salas, E. 1999. Involvement of the aphthovirus RNA region located between the two functional AUGs in start codon selection. Virology 255:324–336

    Article  PubMed  Google Scholar 

  • López de Quinto, S. and Martínez-Salas, E. 2000. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6:1380–1392

    Article  PubMed  Google Scholar 

  • López de Quinto, S., Lafuente, E. and Martínez-Salas, E. 2001. IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7:1213–1226

    Article  PubMed  Google Scholar 

  • López de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F. and Martínez-Salas, E. 2002. IRES-driven translation is stimulated separately by the FMDV 3’ NCR and poly(A) sequences. Nucl. Acids Res. 30:4398–4405

    Article  PubMed  Google Scholar 

  • Martin, L.R. and Palmenberg, A.C. 1996. Tandem mengovirus 5’ pseudoknots are linked to viral RNA synthesis, not poly(C)-mediated virulence. J. Virol. 70:8182–8186

    PubMed  Google Scholar 

  • Mason, P.W., Bezborodova, S.V. and Henry, T.M. 2002. Identification and characterization of a cis-acting replication element (cre) adjacent to the IRES of foot-and-mouth disease virus. J. Virol. 76:9686–9694

    Article  PubMed  Google Scholar 

  • Maynell, L. A., Kirkegaard, K. and Klymkowsky, M.W. 1992. Inhibition of poliovirus RNA synthesis by brefeldin A. J. Virol. 66:1985–1994

    PubMed  Google Scholar 

  • McKnight, K.L. and Lemon. S.M. 1996. Capsid coding sequence is required for efficient replication of human rhinovirus-14 RNA. J. Virol. 70:1941–1952

    PubMed  Google Scholar 

  • McKnight, K. L. and Lemon, S.M. 1998. The rhinovirus type 14 genome contains and internally located RNA structure that is required for viral replication. RNA 4:1569–1584

    Article  PubMed  Google Scholar 

  • Medina, M., Domingo, E., Brangwyn, J.K. and Belsham, G.J. 1993. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194:355–359

    Article  PubMed  Google Scholar 

  • Meerovitch, K. and Sonenberg, N. 1993. Internal initiation of picornavirus RNA translation. Semin. Virol. 4:217–227

    Article  Google Scholar 

  • Meyer, K., Petersen, A., Niepmann, M. and Beck, E. 1995. Interaction of eukaryotic initiation factor eIF-4B with a picornavirus internal translation initiation site. J. Virol. 69:2819–2824

    PubMed  Google Scholar 

  • Miller, L.C., Blakemore, W., Sheppard, D., Atakilit, A., King, A.M.Q. and Jackson, T. 2001. Role of the cytoplasmic domain of the β-subunit of integrin αvβ6 in infection by foot-and-mouth disease virus. J. Virol. 75:4158–4164

    Article  PubMed  Google Scholar 

  • Molla, A., Paul, A.V. and Wimmer E. 1991. Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651

    PubMed  Google Scholar 

  • Murray, K.E., Roberts, A.W. and Barton, D.J. 2001. Poly(rC) binding proteins mediate poliovirus mRNA stability. RNA 7:1126–1141

    Article  PubMed  Google Scholar 

  • Niepmann, M., Petersen, A., Meyer, K. and Beck, E. 1997. Functional involvement of polypyrimidine tract-binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth disease virus. J. Virol. 71:8330–8339

    PubMed  Google Scholar 

  • O'Donnell, V.K., Pacheco, J.M., Henry, T.M. and Mason, P.W. 2001. Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology 287:151–162

    Article  PubMed  Google Scholar 

  • Ohlmann, T., Pain, V.M., Wood, W., Rau, M. and Morley, S.J. 1997. The proteolytic cleavage of eukaryotic initiation factor (eIF) 4G is prevented by eIF4E binding protein (PHAS-I; 4E-BP1) in the reticulocyte lysate. EMBO J. 16:844–855

    Article  PubMed  Google Scholar 

  • Ohlmann T. and Jackson, R.J. 1999. The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA 5:764–778

    Article  PubMed  Google Scholar 

  • Parsley, T.B., Towner, J.S., Blyn, L.B., Ehrenfeld, E. and Semler, BL. 1997. Poly (rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3:1124–1134

    PubMed  Google Scholar 

  • Pata, J.D., Schultz, S.C. and Kirkegaard, K. 1995. Functional oligomerization of poliovirus RNA-dependent RNA-polymerase. RNA 1:466–477

    PubMed  Google Scholar 

  • Paul, A.V., Rieder, E., Kim, D.W., van Boom, J.H. and Wimmer, E. 2000. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J. Virol. 74:10359–10370

    Article  PubMed  Google Scholar 

  • Pause, A., Belsham, G.J., Gingras, A-C., Donze, O., Lin, T-A., Lawrence, J.C. Jr. and Sonenberg, N. 1994a. Insulin dependent stimulation of protein synthesis by phosphorylation of a novel regulator of 5'-cap function. Nature (London) 371:762–767

    Article  PubMed  Google Scholar 

  • Pause, A., Methot, N., Svitkin, Y.V., Merrick, W.C. and Sonenberg. 1994b. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13:1205–1215

    PubMed  Google Scholar 

  • Pelletier, J., and Sonenberg, N. 1998. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature (London) 334:320–325

    Article  Google Scholar 

  • Pestova, T.V., Hellen, C.U.T. and Shatsky, I.N. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16:6859–6869

    PubMed  Google Scholar 

  • Piccone, M.E., Rieder, E., Mason, P.W. and Grubman, M.J. 1995a. The foot-and-mouth-disease virus leader proteinase gene is not required for viral replication. J. Virol. 69:5376–5382

    PubMed  Google Scholar 

  • Piccone, M.E., Zellner, M., Kumosinski, T.F., Mason, P.W. and Grubman, M.J. 1995b. Identification of the active-site residues of the L-proteinase of foot-and-mouth-disease virus. J. Virol. 69:4950–4956

    PubMed  Google Scholar 

  • Pilipenko, E.V., Blinov, V.M., Chernov, B.K., Dmitrieva, T.M. and Agol, V.I. 1989. Conservation of the secondary structure elements of the 5'-untranslated region of cardiovirus and aphthovirus RNAs. Nucl. Acids Res. 17:5701–5711

    PubMed  Google Scholar 

  • Pilipenko, E.V., Pestova, T.V., Kolupaeva, V.G., Khitrina, E.V., Poperechnaya, A.N., Agol, V.I. and Hellen, C.U.T. 2000. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Gen. Dev. 14:2028–2045

    Google Scholar 

  • Pisarev,. A.Y., Charch, L.S., Kaku, Y., Johns, H.L., Shatsky, I.N., and Belsham, G.J. 2004. Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J. Virol. 78:4487–4497

    Article  PubMed  Google Scholar 

  • Poyry, T.A.A., Hentze, M.W. and Jackson, R.J. 2001. Construction of regulatable picornavirus IRESes as a test of current models of the mechanism of internal translation initiation. RNA 7:647–660

    Article  PubMed  Google Scholar 

  • Ramos, R. and Martínez-Salas, E. 1999. Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5:1374–1383

    Article  PubMed  Google Scholar 

  • Rieder, E., Bunch, T., Brown, F. and Mason, P.W. 1993. Genetically-engineered foot-and-mouth-disease viruses with poly(C) tracts of 2 nucleotides are virulent in mice. J. Virol. 67:5139–5145

    PubMed  Google Scholar 

  • Roberts, P. and Belsham, G.J. 1995. Identification of critical amino acids within the foot-and-mouth disease virus Leader protein, a cysteine protease. Virology 213:140–146

    Article  PubMed  Google Scholar 

  • Roberts, L.O. and Belsham G.J. 1997. Complementation of defective picornavirus internal ribosome entry site (IRES) elements by the coexpression of fragments of the IRES. Virology 227:53–62

    Article  PubMed  Google Scholar 

  • Roberts, L.O., Seamons, R.A. and Belsham, G.J. 1998. Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4:520–529

    Article  PubMed  Google Scholar 

  • Robertson, M.E., Seamons, R.A. and Belsham, G.J. 1999. A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5:1167–1179

    Article  PubMed  Google Scholar 

  • Saiz, M., Gomez, S., Martinez-Salas, E. and Sobrino, F. 2001. Deletion or substitution of the aphthovirus 3’ NCR abrogates infectivity and virus replication. J. Gen. Virol. 82:93–101

    PubMed  Google Scholar 

  • Sakoda, Y., Ross-Smith, N., Inoue, T. and Belsham, G.J. 2001. An attenuating mutation in the 2A protease of swine vesicular disease virus, a picornavirus, regulates cap-and internal ribosome entry site-dependent protein synthesis. J Virol. 75, 10643–10650

    Article  PubMed  Google Scholar 

  • Sangar, D.V., Newton, S.E., Rowlands, D.J. and Clarke, B.E. 1987. All foot and mouth disease serotypes initiate protein synthesis at two separate AUGs. Nucl. Acids Res. 15:3305–3315

    PubMed  Google Scholar 

  • Saunders, K. and King, A.M.Q. 1982. Guanidine-resistant mutants of aphthovirus induce the synthesis of an altered non-structural polypeptide, p34. J. Virol. 42:389–394

    PubMed  Google Scholar 

  • Spector, D.H. and Baltimore, D. 1974. Requirement of 3’ terminal polyadenylic acid for the infectivity of poliovirus RNA. Proc. Natl. Acad. Sci. USA 71:2983–2987

    PubMed  Google Scholar 

  • Stassinopoulos, I.A. and Belsham, G.J. 2001. A novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins. RNA 7:114–122

    Article  PubMed  Google Scholar 

  • Strebel, K., and Beck, E. 1986. A second protease of foot-and-mouth-disease virus. J. Virol. 58:893–899

    PubMed  Google Scholar 

  • Strong, R., and Belsham, G.J. 2004. Sequential modification of translation initiation factor elF4GI by two different foot-and-mouth disease protease within infected baby hamster kidney cells: identification of the 3epro cleavage site. J. Gen. Virol. 85 (in press)

    Google Scholar 

  • Svitkin, Y.V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G.J. and Sonenberg, N. 2001a. The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is directly proportional to the degree of mRNA 5’ secondary structure. RNA 7:382–394

    Article  PubMed  Google Scholar 

  • Svitkin, Y.V., Imataka, H., Khaleghpour, K., Kahvejian, A., Liebig, H.D. and Sonenberg, N. 2001b. Poly(A)-binding protein interaction with eIF4G stimulates picornavirus IRES-dependent translation. RNA 7:1743–52

    Article  PubMed  Google Scholar 

  • Tiley, L., King, A.M.Q. and Belsham, G.J. 2003. The foot-and-mouth disease virus cis-acting replication element (cre) can be complemented in trans within infected cells. J. Virol. (in press)

    Google Scholar 

  • Todd, S., Towner, J.S., Brown, D.M. and Semler, B.L. 1997. Replication-competent picornaviruses with complete genomic RNA 3’ noncoding region deletions. J. Virol. 71:8868–8874

    PubMed  Google Scholar 

  • van Kuppeveld, F.J.M., Melchers, W.J.G, Kirkegaard, K. and Doedens, J.R. 1997. Structure-function analysis of coxsackie B3 virus protein 2B. Virology 227:111–118

    Article  PubMed  Google Scholar 

  • Walter, B.L., Nguyen, J.H., Ehrenfeld, E. and Semler, B.L. 1999. Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5:1570–1585

    Article  PubMed  Google Scholar 

  • Woese, C.R., Winker, S. and Gutell, R.R. 1990. Architecture of ribosomal-RNA—constraints on the sequence of tetra-loops. Proc. Natl. Acad. Sci. USA 87:8467–8471

    PubMed  Google Scholar 

  • Ypma-Wong, M.F., Dewalt, P.G., Johnson, V.H., Lamb, J.G., and Semler, B.L. 1988. Protein 3CD is the major poliovirus proteinase responsible for the cleavage of the P1 capsid precursor. Virology 166:265–270

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Belsham, G.J. (2005). Translation and Replication of FMDV RNA. In: Mahy, B.W. (eds) Foot-and-Mouth Disease Virus. Current Topics in Microbiology and Immunology, vol 288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27109-0_3

Download citation

Publish with us

Policies and ethics