Skip to main content

Part of the book series: Medical Radiology Diagnostic Imaging ((Med Radiol Diagn Imaging))

  • 1665 Accesses

Conclusions

The application of modern MRI techniques to the assessment of MS patients has considerably improved our understanding of MS pathophysiology and has provided new objective metrics that might be useful to monitor disease evolution, either in natural history studies or in treatment trials. However, none of the quantitative MR-based techniques considered, taken in isolation, is able to provide a complete picture of the complexity of the MS process and this should call for the definition of aggregates of MR quantities, thought to reflect different aspects of MS pathology, to improve our ability to monitor the disease. At present, longitudinal natural history data collected in large samples of MS patients using structural, metabolic and functional MR techniques are needed to gain additional insight into MS pathobiology and on the actual value of modern MR technologies in the management of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adalsteinsson E, Langer-Gould A, Homer RJ et al (2003) Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 24:1941–1945

    PubMed  Google Scholar 

  • Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  PubMed  CAS  Google Scholar 

  • Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  PubMed  CAS  Google Scholar 

  • Barkhof F, Bruck W, De Groot CJ et al (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073–1081

    Article  PubMed  Google Scholar 

  • Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 103: 247–254

    PubMed  CAS  Google Scholar 

  • Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    PubMed  CAS  Google Scholar 

  • Bjartmar C, Kidd G, Mork S et al (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901

    Article  PubMed  CAS  Google Scholar 

  • Bjartmar C, Kinkel RP, Kidd G et al (2001) Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology 57:1248–1252

    PubMed  CAS  Google Scholar 

  • Bonneville F, Moriarty DM, Li BS et al (2002) Whole-brain N-acetyl aspartate concentration: correlation with T2-weighted lesion volume and expanded disability status scale score in cases of relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 23:371–375

    PubMed  Google Scholar 

  • Bozzali M, Cercignani M, Sormani MP et al (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. AJNR Am J Neuroradiol 23:985–988

    PubMed  Google Scholar 

  • Caramia F, Pantano P, Di Legge S et al (2002) A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging 20:383–388

    PubMed  Google Scholar 

  • Castriota Scanderbeg A, Tomaiuolo F, Sabatini U et al (2000) Demyelinating plaques in relapsing-remitting and secondary-progressive multiple sclerosis: assessment with diffusion MR imaging. AJNR Am J Neuroradiol 21:862–868

    PubMed  CAS  Google Scholar 

  • Cercignani M, Iannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54:1139–1144

    PubMed  CAS  Google Scholar 

  • Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetisation transfer ratio and mean diffusivity of normal-appearing white and gray matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317

    Article  PubMed  CAS  Google Scholar 

  • Chard DT, Griffin CM, McLean MA et al (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain 125:2342–2352

    PubMed  CAS  Google Scholar 

  • Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al (2001) Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933

    PubMed  CAS  Google Scholar 

  • Cifelli A, Arridge M, Jezzard P et al (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653

    Article  PubMed  Google Scholar 

  • Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117:49–58

    PubMed  Google Scholar 

  • Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592

    PubMed  Google Scholar 

  • Dehmeshki J, Ruto AC, Arridge S et al (2001) Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis. Magn Reson Med 46:600–609

    Article  PubMed  CAS  Google Scholar 

  • Dehmeshki J, Chard DT, Leary SM et al (2003) The normal appearing grey matter in primary progressive multiple sclerosis: a magnetisation transfer imaging study. J Neurol 250:67–74

    Article  PubMed  CAS  Google Scholar 

  • De Stefano N, Matthews PM, Antel JP et al (1995a) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Arnold DL (1995b) Reversible decreases in N-acetyl aspartate after acute brain injury. Magn Reson Med 34:721–727

    PubMed  Google Scholar 

  • De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Matthews PM et al (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939

    PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Francis SJ et al (2002) Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol 59:1565–1571

    PubMed  Google Scholar 

  • Dousset V, Gayou A, Brochet B et al (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51:1150–1155

    PubMed  CAS  Google Scholar 

  • Droogan AG, Clark CA, Werring DJ et al (1999) Comparison of multiple sclerosis clinical subgroups using navigated spin echo diffusion-weighted imaging. Magn Reson Imaging 17: 653–661

    PubMed  CAS  Google Scholar 

  • Evangelou N, Esiri MM, Smith S et al (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    Article  PubMed  CAS  Google Scholar 

  • Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary progressive multiple sclerosis: the potential role of 1H MR spectroscopy in defining the nature of disability. AJNR Am J Neuroradiol 19:223–229

    PubMed  CAS  Google Scholar 

  • Fazekas F, Ropele S, Enzinger C et al (2002) Quantitative magnetization transfer imaging of pre-lesional white-matter changes in multiple sclerosis. Mult Scler 8:479–484

    Article  PubMed  CAS  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM et al (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  • Filippi M, Inglese M (2001) Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci 186[Suppl 1]:S37–S43

    PubMed  Google Scholar 

  • Filippi M, Rocca MA (2003) Disturbed function and plasticity in multiple sclerosis as gleaned from functional magnetic resonance imaging. Curr Opin Neurol 16:275–282 (review)

    Article  PubMed  Google Scholar 

  • Filippi M, Campi A, Dousset V et al (1995) A magnetization transfer imaging study of normal-appearing white matter in multiple sclerosis. Neurology 45:478–482

    PubMed  CAS  Google Scholar 

  • Filippi M, Rocca MA, Comi G (1998a) Magnetization transfer ratios of multiple sclerosis lesions with variable durations of enhancement. J Neurol Sci 159:162–165

    PubMed  CAS  Google Scholar 

  • Filippi M, Rocca MA, Rizzo G et al (1998b) Magnetization transfer ratios in multiple sclerosis lesions enhancing after different doses of gadolinium. Neurology 50:1289–1293

    PubMed  CAS  Google Scholar 

  • Filippi M, Rocca MA, Martino G et al (1998c) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814

    PubMed  CAS  Google Scholar 

  • Filippi M, Grossman RI, Comi G (eds) (1999a) Magnetization transfer in multiple sclerosis. Neurology 53[Suppl 3]

    Google Scholar 

  • Filippi M, Iannucci G, Tortorella C et al (1999b) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52:588–594

    PubMed  CAS  Google Scholar 

  • Filippi M, Inglese M, Rovaris M et al (2000a) Magnetization transfer imaging to monitor the evolution of MS: a 1-year follow-up study. Neurology 55:940–946

    PubMed  CAS  Google Scholar 

  • Filippi M, Tortorella C, Rovaris M et al (2000b) Changes in the normal appearing brain tissue and cognitive impairment in multiple sclerosis. J Neurol Neurosurg Psychiatry 68:157–161

    Article  PubMed  CAS  Google Scholar 

  • Filippi M, Iannucci G, Cercignani M et al (2000c) A quantitative study of water diffusion in multiple sclerosis lesions and normal-appearing white matter using echo-planar imaging. Arch Neurol 57:1017–1021

    Article  PubMed  CAS  Google Scholar 

  • Filippi M, Arnold DL, Comi G (eds) (2001a) Magnetic resonance spectroscopy in multiple sclerosis. Springer, Milan

    Google Scholar 

  • Filippi M, Cercignani M, Inglese M et al (2001b) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311

    PubMed  CAS  Google Scholar 

  • Filippi M, Dousset V, McFarland HF et al (2002a) The role of MRI in the diagnosis and monitoring of multiple sclerosis. Consensus report of the “White Matter Study Group” of the International Society for Magnetic Resonance in Medicine. J Magn Reson Imag 15:499–504

    Article  CAS  Google Scholar 

  • Filippi M, Rocca MA, Colombo B et al (2002b) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. NeuroImage 15:559–567

    PubMed  CAS  Google Scholar 

  • Filippi M, Rocca MA, Falini A et al (2002c) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. NeuroImage 15:537–546

    PubMed  CAS  Google Scholar 

  • Filippi M, Bozzali M, Rovaris M et al (2003) Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 126:433–437

    Article  PubMed  CAS  Google Scholar 

  • Filippi M, Rocca MA, Mezzapesa DM et al (2004a) Simple and complex movement-associated functional MRI changes in patients at presentation with clinically isolated syndromes suggestive of MS. Human Brain Mapping 21:108–117

    Article  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Mezzapesa DM et al (2004b) A functional MRI study of cortical activations associated with object manipulation in patients with MS. NeuroImage, in press

    Google Scholar 

  • Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:103–113

    Article  PubMed  Google Scholar 

  • Gadea M, Martinez-Bisbal MC, Marti-Bonmati L et al (2004) Spectroscopic axonal damage of the right locus coeruleus relates to selective attention impairment in early stage relapsing-remitting multiple sclerosis. Brain 127:89–98

    Article  PubMed  Google Scholar 

  • Ge Y, Grossman RI, Udupa JK et al (2001) Magnetization transfer ratio histogram analysis of gray matter in relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 22:470–475

    PubMed  CAS  Google Scholar 

  • Ge Y, Grossman RI, Udupa JK et al (2002) Magnetization transfer ratio histogram analysis of normal-appearing gray matter and normal-appearing white matter in multiple sclerosis. J Comput Assist Tomogr 26:62–68

    Article  PubMed  Google Scholar 

  • Ge Y, Grossman RI, Babb JS et al (2003) Dirty-appearing white matter in multiple sclerosis: volumetric MR imaging and magnetization transfer ratio histogram analysis. AJNR Am J Neuroradiol 24:1935–1940

    PubMed  Google Scholar 

  • Gonen O, Viswanathan AK, Catalaa I et al (1998) Total brain N-acetyl aspartate concentration in normal, age-grouped females: quantitation with non-echo proton NMR spectroscopy. Magn Reson Med 40:684–689

    PubMed  CAS  Google Scholar 

  • Gonen O, Catalaa I, Babb JS et al (2000) Total brain N-acetyl aspartate. A new measure of disease load in MS. Neurology 54:15–19

    PubMed  CAS  Google Scholar 

  • Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51:1689–1697

    PubMed  CAS  Google Scholar 

  • Griffin CM, Chard DT, Ciccarelli O et al (2001) Diffusion tensor imaging in early relapsing-remitting multiple sclerosis. Mult Scler 7:290–297

    Article  PubMed  CAS  Google Scholar 

  • Hillary FG, Chiaravalloti ND, Ricker JH et al (2003) An investigation of working memory rehearsal in multiple sclerosis using fMRI. J Clin Exp Neuropsychol 25:965–978

    PubMed  CAS  Google Scholar 

  • Horsfield MA, Lai M, Webb SL et al (1996) Apparent diffusion coefficients in benign and secondary progressive multiple sclerosis by nuclear magnetic resonance. Magn Reson Med 36:393–400

    PubMed  CAS  Google Scholar 

  • Iannucci G, Minicucci L, Rodegher M et al (1999) Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T1, T2 and MT histograms. J Neurol Sci 171:121–129

    Article  PubMed  CAS  Google Scholar 

  • Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. AJNR Am J Neuroradiol 21:1034–1038

    PubMed  CAS  Google Scholar 

  • Inglese M, van Waesberghe JH, Rovaris M et al (2003a) The effect of interferon beta-1b on quantities derived from MT MRI in secondary progressive MS. Neurology 60:853–860

    PubMed  CAS  Google Scholar 

  • Inglese M, Li BS, Rusinek H et al (2003b) Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magn Reson Med 50:190–195

    Article  PubMed  CAS  Google Scholar 

  • Kalkers NF, Hintzen RQ, van Waesberghe JH et al (2001) Magnetization transfer histogram parameters reflect all dimensions of MS pathology, including atrophy. J Neurol Sci 184155–162

    Google Scholar 

  • Kapeller P, McLean MA, Griffin CM et al (2001) Preliminary evidence for neuronal damage in cortical grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study. J Neurol 248:131–138

    Article  PubMed  CAS  Google Scholar 

  • Kapeller P, Brex PA, Chard D et al (2002) Quantitative 1H MRS imaging 14 years after presenting with a clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 8:207–210

    Article  PubMed  CAS  Google Scholar 

  • Khan O, Shen Y, Ching W et al (2003) Combining immunomodulation and neuroprotection: cerebral axonal recovery in relapsing-remitting multiple sclerosis patients treated with glatiramer acetate. Multiple Sclerosis 9:S63

    Google Scholar 

  • Kidd D, Barkhof F, McConnell R et al (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26

    PubMed  Google Scholar 

  • Kita M, Goodkin DE, Bacchetti P et al (2000) Magnetization transfer ratio in new MS lesions before and during therapy with IFNß-1a. Neurology 54:1741–1745

    PubMed  CAS  Google Scholar 

  • Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  • Le Bihan D, Turner R, Pekar J et al (1991) Diffusion and perfusion imaging by gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1:7–8

    PubMed  Google Scholar 

  • Lee MA, Blamire AM, Pendlebury S et al (2000a) Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Arch Neurol 57:65–70

    PubMed  CAS  Google Scholar 

  • Lee M, Reddy H, Johansen-Berg H et al (2000b) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47:606–613

    PubMed  CAS  Google Scholar 

  • Loevner LA, Grossman RI, Cohen JA et al (1995) Microscopic disease in normal-appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology 196:511–515

    PubMed  CAS  Google Scholar 

  • Lumsden CE (1970) The neuropathology of multiple sclerosis. In: Vinken PJ, Bruyn JW (eds) Handbook of clinical neurology. North-Holland, Amsterdam Vol 9, pp 217–309

    Google Scholar 

  • McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  • Molyneux PD, Barker GJ, Barkhof F et al (2001) Clinical-MRI correlations in a European trial of interferon beta-1b in secondary progressive MS. Neurology 57:2191–2197

    PubMed  CAS  Google Scholar 

  • Narayana PA, Doyle TJ, Lai D et al (1998) Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71

    Article  PubMed  CAS  Google Scholar 

  • Narayanan S, De Stefano N, Francis GS et al (2001) Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 248:979–986

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum AO, Tang CY, Wei TC et al (2000) Whole-brain diffusion MR histograms differ between MS subtypes. Neurology 54:1421–1426

    PubMed  CAS  Google Scholar 

  • Oreja-Guevara C, Rovaris M, Caputo D et al (2003) Changes in cortical gray matter in untreated relapsing-remitting MS patients: a follow up study. Neurology 60[Suppl 1]:A297

    Google Scholar 

  • Pan JW, Krupp LB, Elkins LE et al (2001) Cognitive dysfunction lateralizes with NAA in multiple sclerosis. Appl Neuropsychol 8:155–160

    PubMed  CAS  Google Scholar 

  • Pantano P, Iannetti GD, Caramia F et al (2002a) Cortical motor reorganization after a single clinical attack of multiple sclerosis Brain 125:1607–1615

    Article  PubMed  Google Scholar 

  • Pantano P, Mainero C, Iannetti GD et al (2002b) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. NeuroImage 17:1837–1843

    Article  PubMed  Google Scholar 

  • Parry AM, Scott RB, Palace J et al (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126:2750–2760

    Article  PubMed  Google Scholar 

  • Peterson JW, Bo L, Mork S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400

    Article  PubMed  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Pike GB, De Stefano N, Narayanan S et al (2000) Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 215:824–830

    PubMed  CAS  Google Scholar 

  • Reddy H, Narayanan S, Matthews PM et al (2000a) Relating axonal injury to functional recovery in MS. Neurology 54:236–239

    PubMed  CAS  Google Scholar 

  • Reddy H, Narayanan S, Arnoutelis R et al (2000b) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123:2314–2320

    Article  PubMed  Google Scholar 

  • Reddy H, Narayanan S, Woolrich M et al (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125:2646–2657

    Article  PubMed  CAS  Google Scholar 

  • Richert ND, Ostuni JL, Bash CN et al (1998) Serial whole-brain magnetization transfer imaging in patients with relapsing-remitting multiple sclerosis at baseline and during treatment with interferon beta-1b. AJNR Am J Neuroradiol 19:1705–1713

    PubMed  CAS  Google Scholar 

  • Richert ND, Ostuni JL, Bash CN et al (2001) Interferon beta-1b and intravenous methylprednisolone promote lesion recovery in multiple sclerosis. Mult Scler 7:49–58

    Article  PubMed  CAS  Google Scholar 

  • Rocca MA, Mastronardo G, Rodegher M et al (1999) Long-term changes of magnetization transfer-derived measures from patients with relapsing-remitting and secondary progressive multiple sclerosis. AJNR Am J Neuroradiol 20:821–827

    PubMed  CAS  Google Scholar 

  • Rocca MA, Cercignani M, Iannucci G et al (2000) Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology 55:882–884

    PubMed  CAS  Google Scholar 

  • Rocca MA, Falini A, Colombo B et al (2002a) Adaptive functional changes in the cerebral cortex of patients with non-disabling MS correlate with the extent of brain structural damage. Ann Neurol 51:330–339

    Article  PubMed  Google Scholar 

  • Rocca MA, Matthews PM, Caputo D et al (2002b) Evidence for widespread movement-associated functional MRI changes in patients with PPMS. Neurology 58:866–872

    PubMed  CAS  Google Scholar 

  • Rocca MA, Iannucci G, Rovaris M et al (2003a) Occult tissue damage in patients with primary progressive multiple sclerosis is independent of T2-visible lesions-a diffusion tensor MR study. J Neurol 250:456–460

    Article  PubMed  Google Scholar 

  • Rocca MA, Mezzapesa DM, Falini A et al (2003b) Evidence for axonal pathology and adaptive cortical reorganisation in patients at presentation with clinically isolated syndromes suggestive of MS. NeuroImage 18:847–855

    Article  PubMed  Google Scholar 

  • Rocca MA, Gavazzi C, Mezzapesa DM et al (2003c) A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. NeuroImage 19:1770–1777

    PubMed  Google Scholar 

  • Rocca MA, Pagani E, Ghezzi A et al (2003d) Functional cortical changes in patients with MS and non-specific conventional MRI scans of the brain NeuroImage 19:826–836

    PubMed  Google Scholar 

  • Rocca MA, Mezzapesa DM, Ghezzi A et al (2003e) Cord damage elicits brain functional reorganization after a single episode of myelitis. Neurology 61:1078–1085

    PubMed  CAS  Google Scholar 

  • Rocca MA, Agosta F, Mezzapesa DM et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic’s neuromyelitis optica. NeuroImage, in press

    Google Scholar 

  • Rombouts SA, Lazeron RH, Scheltens P et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50:1896–1899

    PubMed  CAS  Google Scholar 

  • Rovaris M, Filippi M (1999) Magnetic resonance techniques to monitor disease evolution and treatment trial outcomes in multiple sclerosis. Curr Opin Neurol 12:337–344

    Article  PubMed  CAS  Google Scholar 

  • Rovaris M, Filippi M, Falautano M et al (1998) Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 50:1601–1608

    PubMed  CAS  Google Scholar 

  • Rovaris M, Filippi M, Minicucci L et al (2000) Cortical/subcortical disease burden and cognitive impairment in multiple sclerosis. AJNR Am J Neuroradiol 21:402–408

    PubMed  CAS  Google Scholar 

  • Rovaris M, Bozzali M, Santuccio G et al (2001) In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain 124:2540–2549

    PubMed  CAS  Google Scholar 

  • Rovaris M, Bozzali M, Iannucci G et al (2002a) Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis. Arch Neurol 59:1406–1412

    Article  PubMed  Google Scholar 

  • Rovaris M, Iannucci G, Falautano M et al (2002b) Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 195:103–109

    Article  PubMed  Google Scholar 

  • Rovaris M, Agosta F, Sormani MP et al (2003) Conventional and magnetization transfer MRI predictors of clinical multiple sclerosis evolution: a medium-term follow-up study. Brain 126:2323–2332

    Article  PubMed  Google Scholar 

  • Roychowdhury S, Maldijan JA, Grossman RI (2000) Multiple sclerosis: comparison of trace apparent diffusion coefficients with MR enhancement pattern of lesions. AJNR Am J Neuroradiol 21:869–874

    PubMed  CAS  Google Scholar 

  • Santos AC, Narayanan S, De Stefano N et al (2002) Magnetization transfer can predict clinical evolution in patients with multiple sclerosis. J Neurol 249:662–668

    Article  PubMed  Google Scholar 

  • Sarchielli P, Presciutti O, Tarducci R et al (1998) 1H-MRS in patients with multiple sclerosis undergoing treatment with interferon beta-1a: results of a preliminary study. J Neurol Neurosurg Psychiatry 64:204–212

    Article  PubMed  CAS  Google Scholar 

  • Sarchielli P, Presciutti O, Pelliccioli GP et al (1999) Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 122:513–521

    Article  PubMed  Google Scholar 

  • Sarchielli P, Presciutti O, Tarducci R et al (2002) Localized (1) H magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J Neurol 249:902–910

    Article  PubMed  CAS  Google Scholar 

  • Schubert F, Seifert F, Elster C et al (2002) Serial 1H-MRS in relapsing-remitting multiple sclerosis: effects of interferon-beta therapy on absolute metabolite concentrations. MAGMA 14:213–222

    PubMed  CAS  Google Scholar 

  • Sharma R, Narayana PA, Wolinsky JS (2001) Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 7:221–226

    Article  PubMed  CAS  Google Scholar 

  • Silver NC, Lai M, Symms MR et al (1998) Serial magnetization transfer imaging to characterize the early evolution of new MS lesions. Neurology 51:758–764

    PubMed  CAS  Google Scholar 

  • Staffen W, Mair A, Zauner H et al (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 156:1275–1282

    Google Scholar 

  • Suhy J, Rooney WD, Goodkin DE et al (2000) 1H MRSI comparison of white matter and lesions in primary progressive and relapsing-remitting MS. Mult Scler 6:148–155

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia MC, Narayanan S, De Stefano N et al (2002) Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 249:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Tortorella C, Viti B, Bozzali M et al (2000) A magnetization transfer histogram study of normal-appearing brain tissue in MS. Neurology 54:186–193

    PubMed  CAS  Google Scholar 

  • Traboulsee A, Dehmeshki J, Brex PA et al (2002) Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 59:126–128

    PubMed  CAS  Google Scholar 

  • Traboulsee A, Dehmeshki J, Peters KR et al (2003) Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult Scler 9:566–573

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  • van Buchem MA, Grossman RI, Armstrong C et al (1998) Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology 50:1609–1617

    PubMed  Google Scholar 

  • van Waesberghe JHTM, van Walderveen MA, Castelijns JA et al (1998) Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization MR. AJNR Am J Neuroradiol 19:675–683

    PubMed  Google Scholar 

  • van Waesberghe JH, Kamphorst W, De Groot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754

    PubMed  Google Scholar 

  • van Walderveen MA, Barkhof F, Pouwels PJ et al (1999) Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 46:79–87

    PubMed  Google Scholar 

  • Waxman SG (1998) Demyelinating diseases: new pathological insights, new therapeutic targets. New Engl J Med 338:323–326

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG, Ritchie JM (1993) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136

    Article  PubMed  CAS  Google Scholar 

  • Werring DJ, Clark CA, Barker GJ et al (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632

    PubMed  CAS  Google Scholar 

  • Werring DJ, Brassat D, Droogan AG et al (2000a) The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis. A serial diffusion MRI study. Brain 123:1667–1676

    Article  PubMed  Google Scholar 

  • Werring DJ, Bullmore ET, Toosy AT et al (2000b) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68:441–449

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Tench CR, Morgan PS et al (2003) Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability. J Neurol Neurosurg Psychiatry 74:203–207

    PubMed  CAS  Google Scholar 

  • Wylezinska M, Cifelli A, Jezzard P et al (2003) Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 60:1949–1954

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Filippi, M., Rocca, M.A. (2005). Multiple Sclerosis: Other MR Techniques. In: Filippi, M., De Stefano, N., Dousset, V., McGowan, J.C. (eds) MR Imaging in White Matter Diseases of the Brain and Spinal Cord. Medical Radiology Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27644-0_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-27644-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40230-5

  • Online ISBN: 978-3-540-27644-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics