Skip to main content

Echinoderm Adhesive Secretions: From Experimental Characterization to Biotechnological Applications

  • Chapter
Echinodermata

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 39))

Abstract

Adhesion is a way of life in echinoderms. Indeed, all the species belonging to this phylum use adhesive secretions extensively for various vital functions. According to the species or to the developmental stage considered, different adhesive systems may be recognized. (1) The tube feet or podia are organs involved in attachment to the substratum, locomotion, feeding or burrowing. Their temporary adhesion relies on a duo-gland adhesive system resorting to both adhesive and de-adhesive secretions. (2) The larval adhesive organs allow temporary attachment of larvae during settlement and strong fixation during metamorphosis. (3) The Cuvierian tubules are sticky defence organs occurring in some holothuroid species. Their efficacy is based on the instantaneous release of a quick-setting adhesive. All these systems rely on different types of adhesion and therefore differ in the way they operate, in their structure and in the composition of their adhesive. In addition to fundamental interests in echinoderm bioadhesives, a substantial impetus behind understanding these adhesives are the potential technological applications that can be derived from their knowledge. These applications cover two broad fields of applied research: design of water-resistant adhesives and development of new antifouling strategies. In this context, echinoderm adhesives could offer novel features or performance characteristics for biotechnological applications. For example, the rapidly attaching adhesive of Cuvierian tubules, the releasable adhesive of tube feet or the powerful adhesive of asteroid larvae could each be useful to address particular bioadhesion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarzua S, Jakubowski S (1995) Biotechnological investigation for the prevention of biofouling. I. Biological and biochemical principles for the prevention of biofouling. Mar Ecol Prog Ser 123:301–312

    Google Scholar 

  • Albala DM (2003) Fibrin sealants in clinical practice. Cardiovascular Surg 11(S1):5–11

    Article  Google Scholar 

  • Barker MF (1978) Structure of the organs of attachment of brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea). J Exp Mar Biol Ecol 33:1–36

    Google Scholar 

  • Benedict CV, Picciano PT (1989) Adhesives from marine mussels. In: Hemingway RW, Conner AH, Branham SJ (eds) Proc ACS Symp Adhesives from Renewable Resources, vol 385. American Chemical Society, Washington, pp 465–483

    Google Scholar 

  • Burzio LO, Burzio VA, Silva T, Burzio LA, Pardo J (1997) Environmental bioadhesion: themes and applications. Curr Opin Biotechnol 8:309–312

    Article  PubMed  Google Scholar 

  • Callow ME, Callow JA (2002) Marine biofouling: a sticky problem. Biologist 49:1–5

    Google Scholar 

  • Cameron JL, Fankboner PV (1984) Tentacle structure and feeding processes in life stages of the commercial sea cucumber Parastichopus californicus (Stimpson). J Exp Mar Biol Ecol 81:193–209

    Article  Google Scholar 

  • Chia FS, Burke RD, Koss R, Mladenov PV, Rumrill SS (1986) Fine structure of the doliolaria larva of the feather star Florometra serratissima (Echinodermata: Crinoidea), with special emphasis on the nervous system. J Morphol 189:99–120

    Article  Google Scholar 

  • Crisp DJ (1984) Overview of research on marine invertebrate larvae, 1940–1980. In: Costlow JD, Tipper RC (eds) Marine biodeterioration: an interdisciplinary study. E & FN Spon, London, pp 103–126

    Google Scholar 

  • Dalsin JL, Hu B-H, Lee BP, Messersmith PB (2003) Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc 125:4253–4258

    Article  PubMed  Google Scholar 

  • De Moor S, Waite JH, Jangoux M, Flammang P (2003) Characterization of the adhesive from the Cuvierian tubules of the sea cucumber Holothuria forskali (Echinodermata, Holothuroidea). Mar Biotechnol 5:37–44

    Article  PubMed  Google Scholar 

  • Deming TJ (1999) Mussel byssus and biomolecular materials. Curr Opin Biol Chem 3:100–105

    Article  Google Scholar 

  • Eeckhaut I, Flammang P, Lo Bue C, Jangoux M (1997) Functional morphology of the tentacles and tentilla of Coeloplana bannworthi (Ctenophora, Platyctenida), an ectosymbiont of Diadema setosum (Echinodermata, Echinoidea). Zoomorphology 117:165–174

    Article  Google Scholar 

  • Endean R (1957) The Cuvierian tubules of Holothuria leucospilota. Q J Microsc Sci 98:455–472

    Google Scholar 

  • Flammang P (1996) Adhesion in echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol 5. AA Balkema, Rotterdam, pp 1–60

    Google Scholar 

  • Flammang P (2003) The glue of sea cucumber Cuvierian tubules: a novel marine bioadhesive. In: Colliec-Jouault S, Bergé JP, Guézennec J, Fleurence J, Le Gal Y, Roy P (eds) Marine biotechnology: an overview of leading fields. Actes Colloq Ifremer 36:176–185

    Google Scholar 

  • Flammang P, Walker G (1997) Measurement of the adhesion of the podia in the asteroid Asterias rubens (Echinodermata). J Mar Biol Assoc UK 77:1251–1254

    Google Scholar 

  • Flammang P, Demeuleneare S, Jangoux M (1994) The role of podial secretions in adhesion in two species of sea stars (Echinodermata). Biol Bull 187:35–47

    Google Scholar 

  • Flammang P, Michel A, Van Cauwenberge A, Alexandre H, Jangoux M (1998a) A study of the temporary adhesion of the podia in the sea star Asterias rubens (Echinodermata,Asteroidea) through their footprints. J Exp Biol 201:2383–2395

    PubMed  Google Scholar 

  • Flammang P, Gosselin P, Jangoux M (1998b) The podia, organs of adhesion and sensory perception in larvae and postmetamorphic stages of the echinoid Paracentrotus lividus (Echinodermata). Biofouling 12:161–171

    Google Scholar 

  • Flammang P, Ribesse J, Jangoux M (2002) Biomechanics of adhesion in sea cucumber Cuvierian tubules (Echinodermata, Holothuroidea). Integr Comp Biol 42:1107–1115

    Google Scholar 

  • Franc JM (1978) Organization and function of ctenophore colloblasts: an ultrastructural study. Biol Bull 155:527–541

    Google Scholar 

  • Gosselin P, Jangoux M (1998) from competent larva to exotrophic juvenile: a morphofunctional study of the perimetamorphic period of Paracentrotus lividus (Echinodermata, Echinoidea). Zoomorphology 118:31–43

    Article  Google Scholar 

  • Haesaerts D, Jangoux M, Flammang P (2003) Study of the perimetamorphic period of the sea star Asterias rubens by scanning electron microscopy. In: Féral JP, David B (eds) Echinoderm research 2001. AA Balkema, Lisse, pp 155–159

    Google Scholar 

  • Haeserts D, Jangoux M, Flammang P (2005) The attachment complex of brachioloaria larvae of the sea star Asterias rubens (Echinodermata): An unstructural and immunocytochemical study. Zoomorphology (in press)

    Google Scholar 

  • Hamel J-F, Mercier A (2000) Cuvierian tubules in tropical holothurians: usefulness and efficiency as a defence mechanism. Mar Fresh Behav Physiol 33:115–139

    Google Scholar 

  • Hermans CO (1983) The duo-gland adhesive system. Oceanogr Mar Biol Ann Rev 21:281–339

    Google Scholar 

  • Jangoux M, Lahaye M-C (1990) The attachment complex of the dololaria larvae of Antedon bifida (Echinodermata, Crinoidea). In: De Ridder C, Dubois P, Lahaye M-C, Jangoux M (eds) Echinoderm research. AA Balkema, Rotterdam, pp 99–105

    Google Scholar 

  • Kamino K, Inoue K, Maruyama T, Takamatsu N, Harayama S, Shizuri Y (2000) Barnacle cement proteins. Importance of disulfide bonds in their insolubility. J Biol Chem 275:27360–27365

    PubMed  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives, science and technology. Chapman and Hall, London

    Google Scholar 

  • Koehl MAR, Hadfield MG (2004) Soluble settlement cue in slowly moving water within coral reefs induces larval adhesion to surfaces. J Mar Syst 49:75–88

    Article  Google Scholar 

  • Lahaye M-C (1987) Comportement larvaire et ontogénèse postembryonnaire chez la comatule Antedon bifida (Echinodermata, Crinoidea). PhD Thesis, Université Libre de Bruxelles, Brussels

    Google Scholar 

  • Lahaye M-C, Jangoux M (1987) The skeleton of the stalked stages of the comatulid crinoid Antedon bifida (Echinodermata). Fine structure and changes during growth. Zoomorphology 107:58–65

    Article  Google Scholar 

  • Lahaye M-C, Jangoux M (1988) Morphologie externe et comportement des larves doliolaria d'Antedon bifida (Echinodermata, Crinoidea). Ann Soc R Zool Belg 118:183–189

    Google Scholar 

  • Mladenov PV, Chia FS (1983) Development, settling behaviour, metamorphosis and pentacrinoid feeding and growth of the feather star Florometra serratissima. Mar Biol 73:309–323

    Article  Google Scholar 

  • Nachtigall V (1974) Biological mechanisms of attachment. The comparative morphology and bioengineering of organs for linkage, suction, and adhesion. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nakano H, Hibino T, Oji T, Hara Y, Amemiya S (2003) Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160

    Article  PubMed  Google Scholar 

  • Ninan L, Monahan J, Stroshine RL, Wilker JJ, Shi R (2003) Adhesive strength of marine mussel extracts on porcine skin. Biomaterials 24:4091–4099

    Article  PubMed  Google Scholar 

  • Paine VL (1926) Adhesion of the tube feet in starfishes. J Exp Zool 45:361–366

    Article  Google Scholar 

  • Peppas NA, Langer R (1994) New challenges in biomaterials. Science 263:1715–1720

    PubMed  Google Scholar 

  • Ridgway SH, Lindner E, Mahoney KA, Newman WA (1997) Gray whale barnacles Cryptolepas rhachianecti infest white whales, Delphinapterus leucas, housed in San Diego Bay. Bull Mar Sci 61:377–385

    Google Scholar 

  • Santos R (2003) Etude biomécanique et morphologique de l'adhérence chez les oursins (Echinodermata, echinoidea) et sa relation avec la distribution des espèces dans le milieu naturel. Master Thesis, Université de Mons-Hainaut, Belgium

    Google Scholar 

  • Santos R, Haesaerts D, Jangoux M, Flammang P (2005) Comparative histological and immunohistochemical study of sea star tube feet (Echinodermata, Asteroidea). J Morphol 263:259–270

    Article  PubMed  Google Scholar 

  • Singer AJ, Thode HC (2004) A review of the literature on octylcyanoacrylate tissue adhesive. Am J Surg 187:238–248

    Article  PubMed  Google Scholar 

  • Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763

    Article  Google Scholar 

  • Strathmann RR (1978) Larval settlement in echinoderms. In: Chia FS, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier-North Holland, New York, pp 235–246

    Google Scholar 

  • Strausberg RL, Link RP (1990) Protein based medical adhesives. Trends Biotechnol 8:53–57

    Article  PubMed  Google Scholar 

  • Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25:567–571

    Article  PubMed  Google Scholar 

  • Taylor CM, Weir CA (2000) Synthesis of the repeating decapeptide unit of Mefp1 in orthogonally protected form. J Org Chem 65:1414–1421

    Article  PubMed  Google Scholar 

  • Taylor SW, Waite JH (1997) Marine adhesives: from molecular dissection to application. In: McGrath K, Kaplan D (eds) Protein-based materials. Birkhäuser, Boston, pp 217–248

    Google Scholar 

  • Thomas LA, Hermans CO (1985) Adhesive interactions between the tube feet of a starfish, Leptasterias hexactis, and substrata. Biol Bull 169:675–688

    Google Scholar 

  • Tyler S (1988) The role of function in determination of homology and convergence — examples from invertebrates adhesive organs. Fortsch Zool 36:331–347

    Google Scholar 

  • Vaitilingon D, Eeckhaut I, Fourgon D, Jangoux M (2004) Population dynamics, infestation and host selection of Vexilla vexillum (Gmelin, 1791), an ectoparasitic muricid of echinoids, in Madagascar. Dis Aquat Org 61:241–255

    PubMed  Google Scholar 

  • VandenSpiegel D, Jangoux M (1987) Cuvierian tubules of the holothuroid Holothuria forskali (Echinodermata): a morphofunctional study. Mar Biol 96:263–275

    Google Scholar 

  • VandenSpiegel D, Jangoux M, Flammang P (2000) Maintaining the line of defense: regeneration of Cuvierian tubules in the holothuroid Holothuria forskali (Echinodermata). Biol Bull 198:34–49

    PubMed  Google Scholar 

  • Waite JH (1987) Nature's underwater adhesive specialist. Int J Adhesion Adhesives 7:9–14

    Article  Google Scholar 

  • Waite JH (2002) Adhesion à la moule. Integr Comp Biol 42:1172–1180

    Google Scholar 

  • Walker G (1987) Marine organisms and their adhesion. In: Wake WC (ed) Synthetic adhesives and sealants. Wiley, Chichester, pp 112–135

    Google Scholar 

  • Whittington ID, Cribb BW (2001) Adhesive secretions in the Platyhelminthes. Adv Parasitol 48:101–224

    PubMed  Google Scholar 

  • Zahn RK, Müller WEG, Michaelis M (1973) Sticking mechanisms in adhesive organs from a Holothuria. Res Mol Biol 2:47–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flammang, P., Santos, R., Haesaerts, D. (2005). Echinoderm Adhesive Secretions: From Experimental Characterization to Biotechnological Applications. In: Matranga, V. (eds) Echinodermata. Progress in Molecular and Subcellular Biology, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27683-1_9

Download citation

Publish with us

Policies and ethics