Skip to main content

Reverse Symmetry Waveguide for Optical Biosensing

  • Chapter
Frontiers in Chemical Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 3))

Abstract

The present chapter deals with a novel design of planar optical waveguide biosensors. The principle of reverse symmetry is based on making the refractive index (RI) of the waveguide substrate less than the RI of the medium covering the waveguiding film, which is usually an aqueous solution (RI ∼ 1.33). This is opposed to the conventional sensor geometry, where the substrate is glass or polymers with RIs of approximately 1.5. The reverse configuration can be used to tune the penetration depth of the evanescent electromagnetic field into the cover medium up to infinity; thus the waveguide can be tailor-made so that biological objects with any size can be probed by the evanescent field. This is an important improvement compared with, for example, surface plasmon resonance sensors, where the penetration depth is fixed by the choice of metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tiefenthaler K, Lukosz W (1984) Proc Soc Photo-Opt Instrum Eng 514:215–218

    CAS  Google Scholar 

  2. Tiefenthaler K, Lukosz W (1985) Thin Solid Films 126:205–211

    Article  CAS  Google Scholar 

  3. Lukosz W (1995) Sens Actuators 29:37–50

    Google Scholar 

  4. Voros J, Ramsden JJ, Csucs G, Szendro I, Paul SM, Textor M, Spencer ND (2002) Biomaterials 23:3699–3710

    CAS  Google Scholar 

  5. Horvath R, Fricsovszky G, Papp E (2003) Biosens Bioelectron 18:415–428

    Article  CAS  Google Scholar 

  6. Kuhlmeier D, Rodda E, Kolarik LO, Furlong DN, Bilitewski U (2003) Biosens Bioelectron 18:925–936

    Article  CAS  Google Scholar 

  7. Brusatori MA, Van Tassel PR (2003) Biosens Bioelectron 18:1269–1277

    Article  CAS  Google Scholar 

  8. Ramsden JJ (1999) Chimia 53:67–71

    CAS  Google Scholar 

  9. Hirmo S (1999) J Microbiol Methods 37:177–182

    Article  CAS  Google Scholar 

  10. Ramsden JJ, Li SY, Prenosil JE, Heinzle E (1994) Biotechnol Bioeng 43:939–945

    Article  CAS  Google Scholar 

  11. Ramsden JJ, Li SY, Heinzle E, Prenosil JE (1995) Cytometry 19:97–102

    Article  CAS  Google Scholar 

  12. Hutchinson AM (1995) Mol Biotechnol 3:47–54

    CAS  Google Scholar 

  13. Ruiz L (1999) J Biomater Sci Polym Ed 10:931–955

    CAS  Google Scholar 

  14. Hirmo S, Artursson E, Puu G, Wadstrom T, Nilsson B (1998) Anal Biochem 257:63–66

    Article  CAS  Google Scholar 

  15. Voros J, Graf R, Kenausis GL, Bruinink A, Mayer J, Textor M, Wintermantel E, Spencer ND (2000) Biosens Bioelectron 15:423–429

    CAS  Google Scholar 

  16. Tiefenthaler K, Lukosz W (1989) J Opt Soc Am B 6:209–220

    CAS  Google Scholar 

  17. Lukosz W (1995) Sens Actuators B 29:37–50

    Article  Google Scholar 

  18. Kunz RE (1997) Sens Actuators B 38:13–28

    Article  Google Scholar 

  19. Fratamico PM, Strobaugh TP, Medina MB, Gehring AG (1998) Biotechnol Tech 12:571

    Article  CAS  Google Scholar 

  20. Watts HJ, Lowe CR, Pollard-Knight DV (1994) Anal Chem 66:2465

    Article  CAS  Google Scholar 

  21. Kurrat R (1998) PhD dissertation no 12891, ETH, Zurich

    Google Scholar 

  22. Horvath R, Lindvold LR, Larsen NB (2002) Appl Phys B 74:383–393

    CAS  Google Scholar 

  23. Tien PK (1977) Rev Mod Phys 49:61–420

    Article  Google Scholar 

  24. Giebel KF, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U, Bastmeyer M (1999) Biophys J 76:509–516

    CAS  Google Scholar 

  25. Picart C, Lavalle P, Hubert P, Cuisinier FJG, Decher G, Schaaf P, Voegel JC (2001) Langmuir 17:7414–7424

    Article  CAS  Google Scholar 

  26. Picart C, Gergely C, Arntz Y, Voegel JC, Schaaf P, Cuisiner FJG, Senger B (2004) Biosens Bioelectron 20:553–561

    Article  CAS  Google Scholar 

  27. Qi ZM, Matsuda N, Santos JH, Takatsu A, Kato K (2002) Opt Lett 27:689–691

    CAS  Google Scholar 

  28. Horvath R, Pedersen HC, Larsen NB (2002) Appl Phys Lett 81:2166–2168

    CAS  Google Scholar 

  29. An YH, Friedman RJ (1998) J Biomed Mater Res 43:338

    Article  CAS  Google Scholar 

  30. Walkenburg JAC, Woldringh CL (1984) J Bacteriol 160:1151–1157

    Google Scholar 

  31. Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2003) Opt Lett 28:1233–1235

    Google Scholar 

  32. Horvath R, Voros J, Graf R, Fricsovszky G, Textor M, Lindvold LR, Spencer ND, Papp E (2001) Appl Phys B 7:441–447

    Google Scholar 

  33. Horvath R, Pedersen HC, Skivesen N, Selmeczi D, Larsen NB (2005) Appl Phys Lett 86:071101

    Article  Google Scholar 

  34. Horvath R, Skivesen N, Larsen NB (2004) Appl Phys Lett 84:4044–4046

    CAS  Google Scholar 

  35. Skivesen N, Horvath R, Pedersen HC (2003) Opt Lett 28:2473–2475

    Google Scholar 

  36. Horvath R, Lindvold LR, Larsen NB (2003) J Micromech Microeng 13:419

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horváth, R., Skivesen, N., Larsen, N.B., Pedersen, H.C. (2005). Reverse Symmetry Waveguide for Optical Biosensing. In: Orellana, G., Moreno-Bondi, M.C. (eds) Frontiers in Chemical Sensors. Springer Series on Chemical Sensors and Biosensors, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27757-9_9

Download citation

Publish with us

Policies and ethics