Skip to main content

How User’s Requirements Influence the Development of a Scintillator

  • Chapter
Inorganic Scintillators for Detector Systems

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1566 Accesses

Abstract

In this chapter we discuss practical scintillation parameters which are relevant from a user’s point of view for the pragmatic choice of an existing or the development of a new scintillator. They are density, operation speed, light yield, identification of particles, production capability, stability under ionizing radiation, durability of operational parameters. We describe five main domains of applications, each of them with its own list of requirements. Firstly, we consider high-energy physics (HEP) and particle detectors because last two decades have seen a new generation of HEP experiments emerging as a driving force for the development of new scintillators. Further, the spectrometry of low energy γ-quanta and nonlinearity of the scintillator response are described. The different medical imaging modalities and applications of scintillation materials in medical diagnostics are then considered. Finally, areas of scintillator applications in security systems as well as in space research and γ-ray astrophysics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Derenzo SE, Moses WW, Huesman RH, et al. (1993) Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET. Elsevier Science Publishers, Amsterdam, pp 25

    Google Scholar 

  2. L3 Collaboration, Adeva B et al. (1990) The construction of the L3 experiment. Nucl Instr Meth Phys Res A289: 35–102

    ADS  Google Scholar 

  3. Birks JB (1951) The specific fluorescence of anthracence and other organic materials. Proc Phys Soc (London) Letters to the Editor, pp 365–366......

    Google Scholar 

  4. Hofstadter R (1948) Alkali halide scintillation counters. Phys Rev 74: 100–101

    Article  ADS  Google Scholar 

  5. Oreglia et al. (1982) Study of the reaction psi → gamma gamma J / ps. Phys. Rev. D 25: 2295–2277

    Article  Google Scholar 

  6. Kubota Y et al. (1991) The CleoII detector. CLNS 91/1122

    Google Scholar 

  7. Proton-Antiproton Annihilation and Meson Spectroscopy with the Crystal Barrel, C. Amsler, Rev. Mod. Phys. 70 (1998) 1293

    Google Scholar 

  8. Ray RE (1994) The KTeV Pure CsI Calorimeter. In: Proc. Fifth International Conference on Calorimetry in High-Energy Physics, World Scientific, New Jersey, pp 110–114

    Google Scholar 

  9. The Belle Collaboration, Technical Design Report, KEK Report 95-1, April 95

    Google Scholar 

  10. The BaBar Collaboration, BaBar Technical Design Report, SLAC-R-95-457

    Google Scholar 

  11. Novotny R, Riess R, Hingmann R et al. (1987) Detection of hard photons with BaF2 scintillators. Nucl Instr Meth Phys Res A262: 340–346

    Article  ADS  Google Scholar 

  12. GEM Letter of Intent, SSCL SR-1184, November 1991

    Google Scholar 

  13. CMS Technical Proposal, CERN/LHCC 94-38, December 1994

    Google Scholar 

  14. L3P Letter of Intent, CERN/LHCC 92-5 (1992)

    Google Scholar 

  15. ALICE Collaboration Technical Proposal, CERN/LHCC/95-71 (1995)

    Google Scholar 

  16. R&D Proposal for the study of new fast and radiation hard scintillators for calorimetry at LHC: Crystal Clear Collaboration, CERN / DRDC P27 / 91-15, project RD-18

    Google Scholar 

  17. Lecoq P, Li PJ, Rostaing B (1991) BGO radiation damage effects: optical absorption, thermoluminescence and thermoconductivity Nucl Instr Meth Phys Res A300: 240–258

    Article  ADS  Google Scholar 

  18. Annenkov A, Auffray E, Borisevich A, et al. (1999 Suppression of the radiation damage in lead tungstate scintillation crystal. Nucl Instr Meth Phys Res A426: 486–490

    Article  ADS  Google Scholar 

  19. Ilmas ER, Liidya GG, Lushchik Ch.B (1965) Photon multiplication in crystals. Optics Spectroscopy 18: 255–263 (In Russian)

    ADS  Google Scholar 

  20. Birks JB (1951) Scintillation from organic crystals: Specific fluorescence and relative response to different radiations. Proc Phys Soc A64: 874–877

    ADS  Google Scholar 

  21. Birks JB (1951) The Specific Fluorescence of Antracene and Other Organic Materials. Proc Phys Soc (London), Letters to the Editor, pp 364–365

    Google Scholar 

  22. Dorenbos P, de Haas JTM, van Eijk CWE (1995) Nonproportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans Nucl Sci 42: 2190–2202

    Article  ADS  Google Scholar 

  23. Rooney BD, Valentine JD (1997) Scintillator light yield nonproportionality: calculating photon response using measured electron response. IEEE Trans Nucl Sci 44: 509–516

    Article  ADS  Google Scholar 

  24. Pringle RW, Standil S (1950) The gamma-rays from neutron-activated gold. Phys Rev 80: 762–763

    Article  ADS  Google Scholar 

  25. Aitken DW, Beron BL, Yenicay G, et al. (1967), The fluorescent response of NaI(Tl), CsI(Tl), CsI(Na), and CaF (Eu) to X-rays and low energy gamma rays, (1967) IEEE Trans Nucl Sci vol. NS-14, pp. 468–477

    Article  Google Scholar 

  26. Rooney BD, Valentine J (1997) Scintillator light yield nonproportionality: calculating photon response using measured electron response. IEEE Trans Nucl Sci 44: 509–516

    Article  ADS  Google Scholar 

  27. Uchiyama Y, Kouda M, Tanihata C et al. (2001) Study of energy response of Gd2 SiO 5: Ce 3+scintillator for the ASTRO-E hard X-ray detector. IEEE Trans Nucl Sci 46: 379–384

    Article  ADS  Google Scholar 

  28. Moses WW (2002) Current trends in scintillator detectors and materials. Nucl Instr Meth Phys Res A487: 123–128

    Article  ADS  Google Scholar 

  29. Menghesha W, Taulbee TD, Rooney BD et al. (1998) Light yield nonproportionality of CsI(Tl), CsI(Na), and YAP. IEEE Trans Nucl Sci 45: 456–641

    Article  ADS  Google Scholar 

  30. Menghesha W, Valentine JD (2000) A technique for measuring scintillator electron energy resolution using the compton coincidence technique. In: Mikhailin VV (ed) Proc of the Fifth Int Conf on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 173–178

    Google Scholar 

  31. Balcerzyk M, Moszynski M, Kapusta M (2000) Energy resolution of contemporary scintillators. Quest for high resolution, proportional detector. In: Mikhailin VV (ed) Proc of the Fifth Int Conf on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 167–172

    Google Scholar 

  32. Balcerzyk M, Klamra W, Moszynski M, et al. (2000) Nonproportionality and temporal response of ZnSe:Te scintillator studied by large area avalanche photodiodes and photomultipliers. In: Mikhailin VV (ed) Proc of the Fifth Int Conf on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 571–576

    Google Scholar 

  33. Baryshevsky VG, Korzhik MV, Moroz VI et al(1991) YAlO3:Ce—fast-acting scintillators for detection of ionizing radiation. Nucl Instr Meth Phys Res B58: 291–293

    Article  ADS  Google Scholar 

  34. Korzhik MV, Misevich OV, Fyodorov AA (1999) YAlO3:Ce scintillators: application for X-and soft γ-ray detection. Nucl Instr Meth Phys Res B72: 499–501

    ADS  Google Scholar 

  35. Baryshevsky VG, Korzhik MV, Moroz VI, et al. (1992) YAlO3:Ce scintillator for the detectors of ionizing radiation. IET, 3:86–92 (In Russian)

    Google Scholar 

  36. Baryshevski VG, Korzhik MV, Bogatko AV, et al. (1992) Scintillator YAlO3:Ce3+ for the α-particles spectrometry. Izvestia AN BSSR, Physics 2:5 (In Russian)

    Google Scholar 

  37. Kachanov VA, Rykalin V, Korzhik M, et al. (1992) Light source for energy stabilization of calorimetric detectors based on photodetectors. Nucl Instr Meth Phys Res A314: 215

    Article  ADS  Google Scholar 

  38. Drobyshev GYu, Korzhik MV, Missevitch OV, et al. (1993) An application of YAlO3:Ce scintillator to detect soft γ-quanta. IET 3: 176 (In Russian)

    Google Scholar 

  39. De Notaristefani F, Pani R, Scopinaro F, et al. (1995) First results from a YAP:Ce gamma camera for small animal studies IEEE Trans. Nucl. Sci. 43, 3264–3271

    Article  Google Scholar 

  40. Korzhik M, Missevitch O, Kholmetskii AL, et al. (1994) YAlO3:Ce scintillation detector for transmission Mossbauer spectroscopy. 4-th Seeheim workshop on Mossbauer spectroscopy Abstracts Seeheim, Germany Institute fur Anorganische und Analiytiche Chemie, der Jogannes Gutenberg Universitat, Mainz, p 126

    Google Scholar 

  41. Fedorov AA, Kholmetskii AL, Korzhik M, et al. (1994) High-performance transmission Mossbauer spectroscopy with YALO3:Ce scintillation detector. Nucl Instr Meth Phys Res B88: 462–464

    Article  ADS  Google Scholar 

  42. Kobayashi M, Shinkawa T, Sato T et al. (1994) YALO3:Ce-Am light pulsers as a gain monitor for undoped CsI detectors in a magnetic field. Nucl Instr Meth Phys Res A337:355–361

    Article  ADS  Google Scholar 

  43. Missevich Increase of the productivity and precision of Mossbauer measurments in transmission and scattering geometry. Ph.D. Thesis. Minsk, 2000, p. 150 (In Russian)

    Google Scholar 

  44. Moszynski M (2003) Inorganic scintillation detectors in γ-rays spectrometry. Nucl Instr Meth Phys Res A505: 101–110

    Article  ADS  Google Scholar 

  45. Globys ME, Grinev BV (2000) Inorganic scintillators. New and traditional materials. Acta, Kharkov (in Russian)

    Google Scholar 

  46. Anger HO (1958) Anger camera for Nuclear Medicine. Rev Sci Instr 29:p27–45

    Article  ADS  Google Scholar 

  47. Moses WW (2000) Scintillator requirements for medical imaging In: Mikhailin VV (ed) Proc of the Fifth Int Conf on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 11–21

    Google Scholar 

  48. Blasse G (1994), Scintillator materials, Chem Mater, 6:1465–1475

    Article  Google Scholar 

  49. Greshkovich C, Duclos S (1997), Ceramic Scintillators, Annu Rev Mater Sci 27: 69–88

    Article  ADS  Google Scholar 

  50. Deych D, Dobbs J, Marcovici S, Tuval B (1996) Cadmium tungstate detector for computed temograhy. In: Dorenbos P, van Eijk CWE (eds). Inorganic scintillators and their application. Delft University Press, pp 36–39

    Google Scholar 

  51. Kinloch DR, Novak W, Raby P, Toepke I (1994) New developments in cadmium tungstate. IEEE Trans. Nucl. Sci, 41: 752–754

    Article  ADS  Google Scholar 

  52. Yoshida M, Suzuki A, Uchida Y et al. (1988), Application of Gd2O2S ceramic scintillator for X-ray solid state detector in X-ray CT, Jpn J. Appl. Phys, 27:L1572–L1575

    Article  ADS  Google Scholar 

  53. Rossner W, Grabmaier BC (1991) Phosphors for X-ray detectors in computed tomography. J Luminescence 48–49:29–36

    Article  Google Scholar 

  54. Kostler W, Winnacker A, Rossner W, Grabmaier BC (1993), Effect of Prcodoping on the X-ray induced afterglow of (Y,Gd)2O3:Eu, J Phys Chem Solids 56: 907–913

    Article  Google Scholar 

  55. Levin CS, Habte F, Foudray A (2004) Methods to extract more light from minute scintillation crystals used in an ultra-high resolution positron emission tomography detector, Nucl Instr Meth Phys Res A527:35–40

    Article  ADS  Google Scholar 

  56. Wieczorek H, Frings G, Quadfield P, et al. (1995) CsI:Tl for solid state X-ray detectors, Proc. In Dorenbos P, van Eijk CWE (eds). Inorganic Scintillators and Their Applications, Delft University Press, 547–554

    Google Scholar 

  57. Gyueseong Cho, Kyung Soo Lee, Do Kyung Kim, Koan Sik Joo, Annealing effect on optical emission properties of pure and Na doped CsI thin films for X-ray radiographic application, In: Mikhailin VV (ed). Proc of the Fifth Int Conf on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 391–397

    Google Scholar 

  58. Van Eijk CWE (2002) Inorganic scintillators medical imaging. Phys Med Biol, 47:R85–R106

    Article  Google Scholar 

  59. Blasse G, Grabmaier BC (1994), Luminescent Materails, Springer, Berlin, pp 84–162

    Google Scholar 

  60. Sonoda M, Takano M, Miyahara J, Kato H (1983), Computed radiography utilizing scanning laser stimulated luminescence, Radiology 148: 833–838

    Google Scholar 

  61. Roques JP, Paul J, Mandrou P, et al. (1990) The sigma mission on the granat satellite, Adv Space Res, 10:223–232

    Article  ADS  Google Scholar 

  62. Patent PCT W001/60944

    Google Scholar 

  63. Patent PCT W001/60945

    Google Scholar 

  64. a. Fernandez MM, Benlloch JM, Cerda J, et al. (2004) A flat-panel-based mini gamma camera for lymph nodes studies. Nucl Instr Meth Phys Res, A527: 92–96 b. Benlloch JM, Escat B, Fernández M, et al. (2003) Performance tests of a medical mini gamma-camera (summary). Nucl Instr Meth Phys Res, A504: 232–233

    Article  ADS  Google Scholar 

  65. Weisenberger AG, Bradley E, Majewski S, Saha M, (1998) Development of a novel radiation imaging detector system for in vivo gene imaging in small animal studies. IEEE Trans Nucl Sci, NS-145(3):1743–1749

    Article  ADS  Google Scholar 

  66. Giokaris N, Loudos G, Maintas D, et al. (2004) Crystal and collimator optimization studies of a high-resolution γ-camera based on a position sensitive photomultiplier. Nucl Instr Meth, A527: 134–139

    ADS  Google Scholar 

  67. Gektin AV, Gavryluk V, Boyarintsev AYu, Gayshan V (2003), Light spread function control for SPECT/PET systems, In: Second ITBS Conference, Milos, 26–30 May 2003 (abstracts), p 39

    Google Scholar 

  68. Bull U, Bartenstein P, Kirsch CM, Schicha H (2000) Combination systems for SPECT, coincidence, PET and CT. Technical spectrum, operating assumptions and possible areas of application, Nuklearmedizin, 39(1): 3–6.

    Google Scholar 

  69. Delbeke, D, Martin, WH, Patton, JA, Sandler, MP (2001) Value of iterative reconstruction, attenuation correction, and image fusion in the interpretation of FDG PET images with an integrated dual-head coincidence camera and X-ray-based attenuation maps, Radiology, 218(1): 163–71

    Google Scholar 

  70. Patent France 2,237,206

    Google Scholar 

  71. Patton JA, Delbeke D, Sandler MP (2000) Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps, J Nucl Med, 41(8): 1364–1368

    Google Scholar 

  72. McElroy DP, Sung-Cheng Huang, Hoffman EJ (2002) The use of retro-reflective tape for improving spatial resolution of scintillation detectors, IEEE Trans Nucl Sci, 49: 165–171

    Article  ADS  Google Scholar 

  73. Ricard M (2004) Imaging of gamma emitters using scintillation cameras. Nucl Instr Meth Phys Res, A527: 124–129

    Article  ADS  Google Scholar 

  74. Trower WP, Korzhik MV, Fyodorov AA, et al. (1996) Cerium-doped lutetium-based single crystal scintillators. In: Dorenbos P, van Eijk CWE (eds). Inorganic scintillators and their application. Delft University Press, pp 355–358

    Google Scholar 

  75. Womble PC, Schultz FJ, Vourvopoulos G (1995) Nondestructive characterization using pulsed fast-thermal neutrons. Nucl Instr Meth Phys Res, B99: 757–760

    Article  ADS  Google Scholar 

  76. Dean AJ (1992) Imaging is high-energy astronomy. In: DeNotaristefani F, Lecoq P, Schneegans M (eds). Heavy scintillators for scientific and industrial applications. Frontieres, France, pp 53–64

    Google Scholar 

  77. INTEGRAL Assessment Study Report. (1991) ESA Publication ESA SCI 91, pp 1–31

    Google Scholar 

  78. Ubertini P, Cocco GD, Lebrun F (1997), The IBIS Telescope on Board INTEGRAL, Proc. of the Second INTEGRAL Workshop, ESA SP-382, pp 599

    Google Scholar 

  79. a. Barbiellini G, Boezio M, Casolino M, et al. (1991) The GILDA mission: a new techniques for gamma-ray telescope in the energy range 20 MeV–100 GeV. http://ifctr.mi.cnr.it/agile b. Mergeletti S, Barbiellini G, Budini, et al. (1999) GeV-TeV gamma-ray Astrophysics. Workshop “Towards a Major Atmospheric Cerenkov Detector VI.” Snowbird, Utah, pp 11–23

    Google Scholar 

  80. Johnson WN, Grove JE, Phlips BF, et al. (2001) The construction and performance of the CsI hodoscopic calorimeter for the GLAST beam test engineering module. IEEE Trans Nucl Sci, 48: 1182–1189

    Article  ADS  Google Scholar 

  81. Atwood WB, Ritz S, Anthony P et al. (2000) Beam test of gamma-ray large area space telescope components, Nucl. Instr. Meth. A446: 444–460

    ADS  Google Scholar 

  82. Shwarz B (2000) Electromagnetic calorimeter of the BELLE detector. In: Mikhailin VV (ed) Proc of the Fifth Int Conf on Inorganic Scintillators and Their Applications, SCINT99. Moscow State University, Moscow, pp 186–190

    Google Scholar 

  83. BaBar Collaboration. BaBar Technical Design Report, SLAC-R-95-457

    Google Scholar 

  84. Gektin AV, Gavrylyk V, Zosim D (2000), Long length scintillators for the Position-Sensitive Radiation Detectors, IEEE NSS/MIC. Abstracts, p. 263

    Google Scholar 

  85. Gektin AV, Zosim D., Boyarintsev AY, et al. (2004), Long position sensitive CsI(Tl) detectors for the GLAST project, IEEE Nuclear Science Symposium and Medical Imaging Conference, Abstracts, N16-7, p 45

    Google Scholar 

  86. Dorenbos P, Contribution to the SCINT05 conference on scintillators and their industrial applications, Alushta, Ukraine, Sept. 2005

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). How User’s Requirements Influence the Development of a Scintillator. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27768-4_2

Download citation

Publish with us

Policies and ethics