Skip to main content

The Secretory Capacity of a Cell Depends on the Efficiency of Endoplasmic Reticulum-Associated Degradation

  • Chapter
Dislocation and Degradation of Proteins from the Endoplasmic Reticulum

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 300))

Abstract

Plasma cells, like other “professional” secretory cells, are capable of secreting thousands of proteins per second. To accomplish this impressive task, they contain a highly developed endoplasmic reticulum (ER), where newly synthesized proteins must fold and assemble to native structures before secretion. Protein biogenesis in the ER is coupled to a tight quality control schedule: aberrant molecules produced upon failure of the folding/oligomerization processes are retained in the ER, and eventually degraded by ER-associated degradation (ERAD) pathways. The activity of the ERAD machinery therefore needs to be adapted to variations in the load of the ERwith cargo proteins. If ERAD is insufficient, misfolded proteins accumulate causing ER stress, apoptosis, and ER storage diseases. The capacity of ERAD also critically determines the efficiency of protein secretion. Here we summarize recent findings highlighting the role of ERAD in disease and development, particularly in professional secretory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aridor M, Balch WE (1999) Integration of endoplasmic reticulum signaling in health and disease. Nat Med 5:745–751

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D(2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    CAS  PubMed  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10[Suppl]:S2–S9

    PubMed  Google Scholar 

  • Briquet-Laugier V, Ben-Zeev O, White A, Doolittle MH (1999) cld and lec23 are disparate mutations that affect maturation of lipoprotein lipase in the endoplasmic reticulum. J Lipid Res 40:2044–2058

    CAS  PubMed  Google Scholar 

  • Clauss IM, Gravallese EM, Darling JM, Shapiro F, Glimcher MJ, Glimcher LH (1993) In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis. Dev Dyn 197:146–156

    CAS  PubMed  Google Scholar 

  • De St Groth SF, Scheidegger D (1980) Production of monoclonal antibodies: strategy and tactics. J Immunol Methods 35:1–21

    Google Scholar 

  • De Virgilio M, Weninger H, Ivessa NE (1998) Ubiquitination is required for the retrotranslocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743

    PubMed  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  CAS  PubMed  Google Scholar 

  • Eriksson KK, Vago R, Calanca V, Galli C, Paganetti P, Molinari M (2004) EDEM contributes to maintenance of protein folding efficiency and secretory capacity. J Biol Chem 279:44600–44605

    Article  CAS  PubMed  Google Scholar 

  • Fagioli C, Sitia R (2001) Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J Biol Chem 276:12885–12892

    CAS  PubMed  Google Scholar 

  • Ferrari DM, Soling H-D (1999) The protein disulphide-isomerase family: unraveling a string of folds. Biochem J 339:1–10

    Article  CAS  PubMed  Google Scholar 

  • Freedman RB, Klappa P, Ruddock LW (2002) Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep 3:136–140

    Article  CAS  PubMed  Google Scholar 

  • Gass JN, Gifford NM, Brewer JW (2002) Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J Biol Chem 277:49047–49054

    Article  CAS  PubMed  Google Scholar 

  • Gass JN, Gunn KE, Sriburi R, Brewer JW (2004) Stressed-out B cells? Plasma-cell differentiation and the unfolded protein response. Trends Immunol 25:17–24

    Article  CAS  PubMed  Google Scholar 

  • Gillece P, Luz, JM, Lennarz, WJ, de La Cruz FJ, Romisch K (1999) Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 147:1443–1456

    Article  CAS  PubMed  Google Scholar 

  • Glas R, Bogyo M, McMaster JS, Gaczynska M, Ploegh HL (1998) A proteolytic system that compensates for loss of proteasome function. Nature 392:618–622

    CAS  PubMed  Google Scholar 

  • Hendershot LM, Sitia R (2004) Immunoglobulin assembly and secretion. In: Alt FW, Honjo T, Neuberger MS (eds) Molecular biology of B cells. Elsevier, Amsterdam, pp 261–273

    Google Scholar 

  • Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51[Suppl 3]:S455–S461

    CAS  PubMed  Google Scholar 

  • Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  CAS  PubMed  Google Scholar 

  • Helenius A (1994) How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell 5:253–265

    CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105:891–902

    Article  CAS  PubMed  Google Scholar 

  • Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH (2003) Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321–329

    Article  CAS  PubMed  Google Scholar 

  • Jansens A, van Duijn E, Braakman I (2002) Coordinated nonvectorial folding in a newly synthesized multidomain protein. Science 298:2401–2403

    Article  CAS  PubMed  Google Scholar 

  • Katiyar S, Li G, Lennarz WJ (2004) A complex between peptide: N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci U S A 101:13774–13779

    Article  CAS  PubMed  Google Scholar 

  • Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR (1999) Biosynthesis and degradation of CFTR. Physiol Rev 79:S167–S173

    CAS  PubMed  Google Scholar 

  • Lilley BN, Ploegh HL (2004) Amembrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Hendershot LM (2003) The stressful road to antibody secretion. Nat Immunol 4:310–311

    Article  CAS  PubMed  Google Scholar 

  • Mancini R, Fagioli C, Fra AM, Maggioni C, Sitia R (2000) Degradation of unassembled soluble Ig subunits by cytosolic proteasomes: evidence that retrotranslocation and degradation are coupled events. FASEB J 14:769–778

    CAS  PubMed  Google Scholar 

  • Mast SW, Diekman K, Karaveg K, Davis A, Sifers RN, Moremen KW (2005) Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology 15:421–436

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Kubota H, Adachi E, Nagai N, Marutani T, Hosokawa N, Nagata K (2004) Insufficient folding of type IV collagen and formation of abnormal basement membrane-like structure in embryoid bodies derived from Hsp47-null embryonic stem cells. Mol Biol Cell 15:4467–4475

    Article  CAS  PubMed  Google Scholar 

  • Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17:3251–3257

    Article  CAS  PubMed  Google Scholar 

  • Melchers F, ten Boekel E, Seidl T, Kong XC, Yamagami T, Onishi K, Shimizu T, Rolink AG, Andersson J (2000) Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol Rev 175:33–46

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Helenius A (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288:331–333

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158:247–257

    Article  CAS  PubMed  Google Scholar 

  • Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394–1397

    Article  CAS  PubMed  Google Scholar 

  • Olivari S, Galli C, Alanen H, Ruddock L, Molinari M (2005) A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. J Biol Chem 280:2424–2428

    CAS  PubMed  Google Scholar 

  • Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  • Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275:23685–23692

    CAS  PubMed  Google Scholar 

  • Perlmutter DH (1996) Alpha-1-antitrypsin deficiency: biochemistry and clinical manifestations. Ann Med 28:385–394

    CAS  PubMed  Google Scholar 

  • Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS, Zhang J, Horton HF, Scott A, Orkin SH, Byrne MC et al (2000) An essential role in liver development for transcription factor XBP-1. Genes Dev 14:152–157

    CAS  PubMed  Google Scholar 

  • Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307

    Article  CAS  PubMed  Google Scholar 

  • Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, Yu X, Yang L, Tan BK, Rosenwald A et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93

    Article  CAS  PubMed  Google Scholar 

  • Shang J, Korner C, Freeze H, Lehrman MA (2002) Extension of lipid-linked oligosaccharides is a high-priority aspect of the unfolded protein response: endoplasmic reticulum stress in type I congenital disorder of glycosylation fibroblasts. Glycobiology 12:307–317

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, Yoshida H, Morimoto R, Kurnit DM, Mori K, Kaufman RJ (2001) Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107:893–903

    Article  CAS  PubMed  Google Scholar 

  • Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426:891–894

    Article  CAS  PubMed  Google Scholar 

  • Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167:35–41

    Article  CAS  PubMed  Google Scholar 

  • Su K, Stoller T, Rocco J, Zemsky J, Green R (1993) Pre-Golgi degradation of yeast prepro-alpha-factor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate. J Biol Chem 268:14301–14309

    CAS  PubMed  Google Scholar 

  • Tortorella D, Story CM, Huppa JB, Wiertz EJ, Jones TR, Bacik I, Bennink JR, Yewdell JW, Ploegh HL (1998) Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J Cell Biol 142:365–376

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  • Trombetta ES, Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649–676

    Article  CAS  PubMed  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  CAS  PubMed  Google Scholar 

  • Van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R, Braakman I, Heck AJ (2003) Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18:243–253

    PubMed  Google Scholar 

  • Witzig TE, Wahner-Roedler DL (2002) Heavy chain disease. Curr Treat Options Oncol 3:247–254

    PubMed  Google Scholar 

  • Wu Y, Swulius MT, Moremen KW, Sifers RN (2003) Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A 100:8229–8234

    CAS  PubMed  Google Scholar 

  • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  CAS  PubMed  Google Scholar 

  • Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, Nagata K, Mori K (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4:265–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molinari, M., Sitia, R. (2006). The Secretory Capacity of a Cell Depends on the Efficiency of Endoplasmic Reticulum-Associated Degradation. In: Wiertz, E., Kikkert, M. (eds) Dislocation and Degradation of Proteins from the Endoplasmic Reticulum. Current Topics in Microbiology and Immunology, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28007-3_1

Download citation

Publish with us

Policies and ethics