Skip to main content

On Nonconvex Relaxation Properties of Multidimensional Control Problems

  • Conference paper
Recent Advances in Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 563))

Summary

We provide two examples concerning the relaxation properties of a model problem in multidimensional control: EquationSource % % MathType!MTEF!2!1!+- % feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacq % GHRiI8daWgaaWcbaGaeuyQdCfabeaaruWrHjxyT9MBKbacfaGccaWF % sgGaaiikaiaadQeacaWG4bGaaiikaiaadshacaGGPaGaaiykaiaads % gacaWG0bGaeyOKH4QaciyAaiaac6gacaGGMbGaaiyiaaaa!4D08! \[ \smallint _\Omega f(Jx(t))dt \to \inf !$$, Ω ⊂ ℝm, xW{sk0/1,∞} (Ω, ℝn), Jx(t) ∈ K ⊂ ℝnm a. e. where n ≤ 2, m ≤ 2, Jx(t) is the Jacobian of x, and K is a convex body. The first example justifies the use of quasiconvex functions with infinite values in the relaxation process. In the second one, we examinate the relaxation properties of a restricted quasiconvex envelope function ƒ* introduced by Dacorogna/Marcellini.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Andrejewa and R. K1ötzler. Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil I. Z. Angew. Math. Mech., 64:35–44, 1984.

    MathSciNet  Google Scholar 

  2. J.A. Andrejewa and R. Klotzler. Zur analytischen Lösung geometrischer Optimierungsaufgaben mittels Dualität bei Steuerungsproblemen. Teil II. Z. Angew. Math. Mech., 64:147–153, 1984.

    MathSciNet  Google Scholar 

  3. N. Bourbaki. Elements de Mathématique. Livre VI: Intégration, Chap. I–IV. Hermann, Paris, 1952.

    Google Scholar 

  4. C. Caratheodory. Vorlesungen über reelle Funktionen. Chelsea; New York, 3rd ed., 1968.

    Google Scholar 

  5. G. Carlier and T. Lachand-Robert. Régularité des solutions d’un problème variationnel sons contrainte de convexité. C. R. Acad. Sci. Paris Sér. I Math., 332:79–83, 2001.

    MathSciNet  Google Scholar 

  6. L. Cesari. Optimization with partial differential equations in Dieudonné-Rashevsky form and conjugate problems. Arch. Rat. Mech. Anal., 33:339–357, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Dacorogna. Direct Methods in the Calculus of Variations. Springer, Berlin, 1989.

    Google Scholar 

  8. B. Dacorogna and P. Marcellini. General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acts Mathematics 178:1–37, 1997.

    Article  MathSciNet  Google Scholar 

  9. B. Dacorogna and P. Marcellini. Implicit Partial Differential Equations. Birkhauser, Boston, 1999.

    Google Scholar 

  10. I. Ekeland and R. Temam. Convex Analysis and Variational Problems. SIAM Philadelphia, 2nd ed., 1999.

    Google Scholar 

  11. L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992.

    Google Scholar 

  12. A.D. Ioffe and V.M. Tichomirov. Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.

    Google Scholar 

  13. D. Kinderlehrer and P. Pedregal. Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal., 115:329–365, 1991.

    Article  MathSciNet  Google Scholar 

  14. J.B. Kruskal. Two convex counterexamples: A discontinuous envelope function and a nondifferentiable nearest-point mapping. Proc. Amer. Math. Soc., 23:697–703, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Lachand-Robert and M.A. Peletier. Minimisation de fonctionnelles dans un ensemble de fonctions convexes. C. R. Acad. Sci. Paris Ser. I Math., 325:851–855, 1997.

    Google Scholar 

  16. T. Lachand-Robertand M.A. Peletier. An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. Inst. H. Poincaré — Analyse non linèaire 18:179–198, 2001.

    Article  Google Scholar 

  17. S. Pickenhain. Beiträge zur Theorie mehrdimensionaler verallgemeinerter Steuerungsprobleme. Habilitationsschrift, Universität Leipzig, 1991.

    Google Scholar 

  18. S. Pickenhain and M. Wagner. Critical points in relaxed deposit problems. In: A. Ioffe, S. Reich, and I. Shafrir (Eds.), Calculus of Variations and Optimal Control, Technion 98, Vol. II (Research Notes in Mathematics, Vol. 411). Chapman & Hall, CRC Press; Boca Raton, pp. 217–236, 1999.

    Google Scholar 

  19. S. Pickenhain and M. Wagner. Pontryagin principle for state-constrained control problems governed by a first-order PDE system. JOTA 107:297–330, 2000.

    Article  MathSciNet  Google Scholar 

  20. S. Pickenhain and M. Wagner, Piecewise continuous controls in Dieudonné-Rashevsky type problems. To appear in JOTA, Vol. 127, 2005.

    Google Scholar 

  21. E. Sauer. Schub and Torsion bei elastischen prismatischen Balken. Verlag Wilhelm Ernst & Sohn; Berlin-München (Mitteilungen aus dem Institut für Massivbau der TH Darmstadt 29), 1980.

    Google Scholar 

  22. R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press; Cambridge, 1993.

    Google Scholar 

  23. K. Schulz and B. Schwartz. Finite extensions of convex functions. Math. Operationsforschung Statist., Ser. Optimization 10:501–509, 1979.

    MathSciNet  Google Scholar 

  24. T.W. Ting. Elastic-plastic torsion of convex cylindrical bars. J. Math. Mech., 19:531–551, 1969.

    MATH  MathSciNet  Google Scholar 

  25. T.W. Ting. Elastic-plastic torsion problem III. Arch. Rat. Mech. Anal., 34:228–244, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Wagner. Pontryagin’s maximum principle for Dieudonné-Rashevsky type problems involving Lipschitz functions. Optimization 46:165–184, 1999.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, M. (2006). On Nonconvex Relaxation Properties of Multidimensional Control Problems. In: Seeger, A. (eds) Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol 563. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28258-0_15

Download citation

Publish with us

Policies and ethics