Skip to main content

Identifying and Meshing Thin Sections of 3-d Curved Domains

  • Conference paper
Proceedings of the 14th International Meshing Roundtable

Summary

Realization of the full benefits of variable p-version finite elements requires the careful construction of prismatic elements in thin sections. This paper presents a procedure to automatically isolate the thin sections using the points on an approximate medial surface computed by an octree-based algorithm. Using the pairs of triangles associated with medial surface (MS) points, in conjunction with adjacency, classification and distance information, sets of surface triangles that are on opposite face patches in thin sections are identified. Mesh modifications are then executed to match the surface triangulations on the opposite face patches such that prismatic elements can be generated without diagonal edges through the thickness directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Reddy, Theory and analysis of elastic plates. 1999, Taylor & Francies.

    Google Scholar 

  2. R.J. Donaghy, C.G Armstrong, M.A. Price (2000) Dimensional Reduction of surface models for analysis. Eng. with Computers 16: 24–35.

    Article  Google Scholar 

  3. RL Actis, SP Engelstad, BA Szabo (2002) Computational requirements in design and design certification, Collection of Technical Papers-AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 1379–1389.

    Google Scholar 

  4. Duster, H. Broker, E. Rank (2001) The p-version of the finite element method for three dimensional curved thin walled structures, Int. J. Numer. Methods Engrg, 52: 673–703.

    Article  Google Scholar 

  5. C.A. Duarte, I. Babuska (2002) Mesh-independent p-orthotropic enrichment using the generalized finite element method, Int. J. Numer. Methods Engrg, 55: 1477–1492.

    Article  Google Scholar 

  6. S. Dey, M.S. Shephard, J. E. Flaherty (1997) Geometry representation issues associated with p-version finite element computation, Comput. Methods. Appl. Mechanics. Engrg., 150: 39–55.

    Article  MathSciNet  Google Scholar 

  7. C.K. Lee, Q.X. Xu (2005) A new automatic adaptive 3D solid mesh generation scheme for thin-walled structures. Inter. J. Numer. Meth. Engng 62: 1519–1558.

    Article  Google Scholar 

  8. N. M. Patrikalakis, H. N. Gursoy (1990) Shape interrogation by medial axis transform, ASME Advances in Design Automation, 16th design automation conf., Chicago, DE-vol 23, 77–88.

    Google Scholar 

  9. P. Sampl (2001) Medial axis construction in three dimensions and its application to mesh generation. Engineering with Computers 17: 234–248.

    Article  MATH  Google Scholar 

  10. M. A. Price, C. G. Armstrong, M. A. Sabin (1995) Hexahedral mesh generation by medial surface subdivision: I. Solids with convex edges, Int. J. Numer. Meth. Eng, 38, 3335–3359

    Article  Google Scholar 

  11. M. A. Price, C. G. Armstrong (1997) Hexahedral mesh generation by medial surface subdivision: part II. Solids with flat and concave edges, Int. J. Numer. Meth. Eng, 40, 111–136

    Article  Google Scholar 

  12. K-F Tchon, M. Khachan, F. Fuibault, R. Camarero (2005) Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness, Computer-Aided Design 37: 173–187

    Article  Google Scholar 

  13. X. Li, M.S. Shephard, M.W. Beall (2003) Accounting for curved domains in mesh adaptation, Int. J. Numer. Methods Engrg, 58: 247–276.

    Article  Google Scholar 

  14. X.J. Luo, M.S. Shephard, R.M. Obara, R. Nastasia, M.W. Beall (2004) “Automatic p-version mesh generation for curved domains”, Engrg. Comput. 20: 265–285.

    Article  Google Scholar 

  15. M.W. Beall and M.S. Shephard (1997) A general topology-based mesh data structure, Inter. J. Numer. Meth. Engng 40: 1573–1596.

    Article  MathSciNet  Google Scholar 

  16. A. Lieutier (2004) Any open bounded subset of rn has the same homotopy type as its medial axis, Computer-Aided Design 36: 1029–1046.

    Article  Google Scholar 

  17. M. Ainsworth and J.T. Oden (2000) A posteriori error estimation in finite element analysis, A wiley-interscience publication.

    Google Scholar 

  18. StressCheck User’s Manual (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, L., Luo, X., Shephard, M.S. (2005). Identifying and Meshing Thin Sections of 3-d Curved Domains. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics