Skip to main content

Summary

Q-learning in the Reinforcement Learning (RL) field is the powerful and attractive tool to make robots generate autonomous behavior. But it needs large amount of computational cost because of its discrete state and action. To generated smooth trajectory with less computational cost, we propose two ingredients for Q-learning. We applied Q-learning to the simulated two wheeled robot to generate trajectory for Ball-To-Goal task in robot soccer. …

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.S. Sutton, A. Barto, “Reinforcement Learning:An Introduction”, MIT Press, 1998.

    Google Scholar 

  2. J. Peng, R.J. Williams, “Incremental Multi-Step Q-Learning”, Machine Learning, Vol.22,pp283–290,1996.

    Google Scholar 

  3. A. Sherstov, P. Stone, “On Continuous-Action Q-Learning via Tile Coding Function Approximation”, In Under Review., June 2004.

    Google Scholar 

  4. S. Hagen, B. Kröse, “Neural Q-learning”, In Neural Computing &, Applications, 12(2), pages 81–88, November 2003.

    Article  Google Scholar 

  5. A. Barto, S. Mahadevan, “Recent Advances in Hierarchical Reinforcement Learning”, Discrete Event Dynamic Systems:Theory and Applications, 13,41–77,2003.

    Article  MathSciNet  Google Scholar 

  6. Y. Takahashi, M. Asada, “Multi-Layered Learning Systems for Vision-Based Behavior Acquision of A Real Mobile Robot”, Proceedings of SICE Annual Conference 2003 in Fukui, Vol. CD-ROM, pp. 2937–2942, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimizu, M., Fujita, M., Miyamoto, H. (2006). Trajectory Generation for a Mobile Robot by Reinforcement Learning. In: Murase, K., Sekiyama, K., Naniwa, T., Kubota, N., Sitte, J. (eds) Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29344-2_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-29344-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28496-3

  • Online ISBN: 978-3-540-29344-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics