Skip to main content

Marker Genes As Tools To Study Deliberately Released Soil Bacteria

  • Chapter
Nucleic Acids and Proteins in Soil

Part of the book series: Soil Biology ((SOILBIOL,volume 8))

  • 2225 Accesses

18.8 Conclusions: Biosafety and Usefulness of Small-Scale Field Release Studies with Marker Gene-Tagged Bacteria

Despite the fact that the number of deliberate field releases of marker gene-tagged bacteria is still relatively low compared to field studies with genetically engineered plants, we can already look back over a significant amount of work which was conducted during the last 20 years in a number of different countries and continents. Most of these studies were conducted just to follow the fate of inoculated cells into the environment and to test hypotheses about their behaviour as predicted by fine-scale molecular analyses and soil microcosm studies. Genetic engineering has been the crucial technique to equip bacterial inoculants with a selective and/or detection marker and thereby allowed the monitoring of their fate in the environment. Genetic engineering, however, is also the most powerful technology for improving inoculants, as it enables the development of much broader and more targeted solutions than classical mutation techniques. The discussion about the potential risks connected with the deliberate release of such optimised inoculants is as important as it was 20 years ago. The experiences made with the field releases thus far are one of the most important sources of information for discussion and risk assessment on a case-by-case basis. The most important message from these studies is that no such release has caused any known damage to human health or to ecosystem functions. On the one hand, this is not an encouragement to extrapolate a zero-risk expectation for the future. On the other hand, it is a clear indication of how valuable such small-scale field releases were and can be, to extend our knowledge about the interactions between microorganisms and their environment and to develop products that contribute to a sustainable use of biological resources in agriculture. It remains a challenge for environmental microbiologists not only to unravel and optimise the highly beneficial properties of microorganisms for environmental applications, but also to share this fascinating and important endeavour with the public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adilova AT, Chernikova TN, Abdukarimov AA, Nasretdinova MN (2001) Use of the green fluorescent protein (GFP) as a marker for ecological studies of phenol-degrading strain of Pseudomonas. Mol Biol Cell 12:2151

    Google Scholar 

  • Alexander E, Pham D, Steck TR (1999) The viable-but-nonculturable condition is induced by copper in Agrobacterium tumefaciens and Rhizobium leguminosarum. Appl Environ Microbiol 65:3754–3756

    PubMed  CAS  Google Scholar 

  • Alexeyev MF, Shokolenko IN, Croughan TP (1995) New mini-Tn5 derivatives for insertion mutagenesis and genetic engineering in Gram-negative bacteria. Can J Microbiol 41:1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Amarger N (2001) Rhizobia in the field. Adv Agron 73:109–168

    CAS  Google Scholar 

  • Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246

    PubMed  CAS  Google Scholar 

  • Angle JS, Levin MA, Gagliardi JV, Mcintosh MS (1995) Validation of microcosms for examining the survival of Pseudomonas aureofaciens (lacZY) in soil. Appl Environ Microbiol 61:2835–2839

    PubMed  CAS  Google Scholar 

  • Bailey MJ, Lilley AK, Thompson IP, Rainey PB, Ellis RJ (1995) Site directed chromosomal marking of a fluorescent pseudomonad isolated from the phytosphere of sugar beet; stability and potential for marker gene transfer. Mol Ecol 4:755–763

    PubMed  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Basaglia M, Casella S, Peruch U, Poggiolini S, Vamerali T, Mosca G, Vanderleyden J, De Troch P, Nuti MP (2003) Field release of genetically marked Azospirillum brasilense in association with Sorghum bicolor L. Plant Soil 256:281–290

    Article  CAS  Google Scholar 

  • Bascones E, Imperial J, Ruiz-Argueso T, Palacios JM (2000) Generation of new hydrogenrecycling Rhizobiaceae strains by introduction of a novel hup minitransposon. Appl Environ Microbiol 66:4292–4299

    Article  PubMed  CAS  Google Scholar 

  • Bennett AJ, Leifert C, Whipps JM (2003) Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and nonsterile soils. Soil Biol Biochem 35:1565–1573

    Article  CAS  Google Scholar 

  • Björklöf K, Jørgensen KS (2001) Applicability of non-antibiotic resistance marker genes in ecological studies of introduced bacteria in forest soil. FEMS Microbiol Ecol 38:179–188

    Google Scholar 

  • Bloemberg GV, OToole GA, Lugtenberg BJJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl Environ Microbiol 63:4543–4551

    PubMed  CAS  Google Scholar 

  • Bosworth AH, Williams MK, Albrecht KA, Hankinson TR, Ronson CW, Cannon F, Wacek TJ, Triplett EW (1994) Alfalfa yield response to inoculation with Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl Environ Microbiol 60:3815–3832

    PubMed  CAS  Google Scholar 

  • Bromfield ESP, Butler G, Barran LR (2001) Temporal effects on the composition of a population of Sinorhizobium meliloti associated with Medicago sativa and Melilotus alba. Can J Microbiol 47:567–573

    Article  PubMed  CAS  Google Scholar 

  • Castillo M, Flores M, Mavingui P, Martinez-Romero E, Palacios R, Hernandez G (1999) Increase in alfalfa nodulation, nitrogen fixation, and plant growth by specific DNA amplification in Sinorhizobium meliloti. Appl Environ Microbiol 65:2716–2722

    PubMed  CAS  Google Scholar 

  • Cavalca L, Colombo M, Larcher S, Gigliotti C, Collina E, Andreoni V (2002) Survival and naphthalene-degrading activity of Rhodococcus sp. strain 1BN in soil microcosms. J Appl Microbiol 92:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Cebolla A, Vazquez ME, Palomares AJ (1995) Expression vectors for the use of eukaryotic luciferases as bacterial markers with different colors of luminescence. Appl Environ Microbiol 61:660–668

    PubMed  CAS  Google Scholar 

  • Choi HY, Ryder MH, Gillings MR, Stokes HW, Ophel-Keller KM, Veal DA (2003) Survival of a lacZY-marked strain of Pseudomonas corrugata following a field release. FEMS Microbiol Ecol 43:367–374

    Article  CAS  PubMed  Google Scholar 

  • Clancey ST, Wood DW, Pierson EA, Pierson LS (2002) Survival of GacS/GacA mutants of the biological control bacteriumPseudomonas aureofaciens 30–84 in the wheat rhizosphere. Appl Environ Microbiol 68:3308–3314

    Article  CAS  Google Scholar 

  • Clark EA, Lehman H (2001) Assessment of GM crops in commercial agriculture. J Agric Environ Ethic 14:3–28

    Article  Google Scholar 

  • Compeau G, Alachi BJ, Platsouka E, Levy SB (1988) Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54:2432–2438

    PubMed  CAS  Google Scholar 

  • Corich V, Bosco F, Giacomini A, Basaglia M, Squartini A, Nuti MP (1996) Fate of genetically modified Rhizobium leguminosarum biovar viciae during long-term storage of commercial inoculants. J Appl Bacteriol 81:319–328

    PubMed  CAS  Google Scholar 

  • Corich V, Giacomini A, Vendramin E, Vian P, Carolot M, Squartini A, Nuti MP (2000) The field release and monitoring of rhizobial strains marked with lacZ and mercury resistance genes. In: Jansson JK, Van Elsas JD, Bailey MJ (eds) Tracking genetically-engineered microorganisms. Landes Bioscience, Georgetown, Texas, pp 139–144

    Google Scholar 

  • Corich V, Giacomini A, Vian P, Vendramin E, Carlot M, Basaglia M, Squartini A, Casella S, Nuti MP (2001) Aspects of marker/reporter stability and selectivity in soil microbiology. Microb Ecol 41:333–340

    PubMed  CAS  Google Scholar 

  • Court D, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Ann Rev Genet 36:361–388

    Article  PubMed  CAS  Google Scholar 

  • Craig NL (1989) Transposon Tn7. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 211–225

    Google Scholar 

  • Cresswell A, Skot L, Cookson AR (1994) The construction, detection and use of bioluminescent Rhizobium leguminosarum biovar trifolii strains. J Appl Bacteriol 77:656–665

    Google Scholar 

  • Cullen DW, Nicholson PS, Mendum TA, Hirsch PR (1998) Monitoring genetically modified rhizobia in field soils using the polymerase chain reaction. J Appl Microbiol 84:1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Da HN, Deng SP (2003) Survival and persistence of genetically modified Sinorhizobium meliloti in soil. Appl Soil Ecol 22:1–14

    Article  Google Scholar 

  • Dammann-Kalinowski T, Niemann S, Keller M, Selbitschka W, Tebbe CC, Pühler A (1996) Characterization of two bioluminescent Rhizobium meliloti strains constructed for field releases. Appl Microbiol Biotechnol 45:509–512

    PubMed  CAS  Google Scholar 

  • de Bruijn FJ (1987) Transposon Tn5 mutagenesis to map genes. Methods Enzymol 154:175–196

    PubMed  Google Scholar 

  • de Leij FAAM, Sutton EJ, Whipps JM, Lynch JM (1994) Effect of a genetically-modified Pseudomonas aureofaciens on indigenous microbial populations of wheat. FEMS Microbiol Ecol 13:249–257

    Google Scholar 

  • de Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS, Lynch JM (1995a) Field release of a genetically-modified Pseudomonas fluorescens on wheat — establishment, survival and dissemination. Bio/Technology 13:1488–1492

    Article  Google Scholar 

  • de Leij FAAM, Sutton EJ, Whipps JM, Fenlon JS, Lynch JM (1995b) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl Environ Microbiol 61:3443–3453

    PubMed  Google Scholar 

  • de Lorenzo V, Herrero M, Sanchez JM, Timmis KN (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224

    Google Scholar 

  • de Weger LA, Dunbar P, Mahafee WF, Lugtenberg BJJ, Sayler GS (1991) Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl Environ Microbiol 57:3641–3644

    PubMed  Google Scholar 

  • deWeger LA, von der Bij AJ, Dekkers LC, Simons M, Wijffelman CA, Lugtenberg BJJ (1995) Colonization of rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228

    Google Scholar 

  • Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Ecol 36:920–936

    Article  Google Scholar 

  • Drahos SJ, Hemming BC, McPherson S (1986) Tracking recombinant organisms in the environment: β-galactosidase as a selectable non-antibiotic marker for fluoresecent pseudomonads. Bio/Technology 4:439–444

    Article  CAS  Google Scholar 

  • Drahos DJ, Barry GF, Hemming BC, Brandt EJ, Skipper HD, Kline EL, Kluepfel DA, Hughes TA, Gooden DT (1988) Pre-release testing procedures: US field test of a lacZY-engineered soil bacterium. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) The release of genetically-engineered micro-organisms. Academic Press, London, pp 181–191

    Google Scholar 

  • Dresing U, Hagen M, Selbitschka W, Pühler A, Keller M (1998) Reduced survival of a RecA-deficient Sinorhizobium meliloti strain in sterile and non-sterile soil during heat stress. FEMS Microbiol Ecol 27:327–338

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  PubMed  CAS  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, de Bruijn FJ, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    PubMed  CAS  Google Scholar 

  • Eggert T, Leggewie C, Puls M, Streit W, Van Pouderoyen G, Dijkstra BW, Jaeger KE (2004) Novel biocatalysts by identification and design. Biocatal Biotransfor 22:139–144

    Article  CAS  Google Scholar 

  • Ely B (1985) Vectors for transposon mutagenesis of non-enteric bacteria. Mol Gen Genetic 200:302–304

    Article  CAS  Google Scholar 

  • England LS, Lee H, Trevors JT (1995) Recombinant and wild-type Pseudomonas aureofaciens strains introduced into soil microcosms: effect on decomposition of cellulose and straw. Mol Ecol 4:221–230

    PubMed  CAS  Google Scholar 

  • Fedi S, Brazil D, Dowling DN, O’Gara F (1996) Construction of a modified mini-Tn5 lacZY non-antibiotic marker cassette: ecological evaluation of a lacZY marked Pseudomonas strain in the sugarbeet rhizosphere. FEMS Microbiol Lett 135:251–257

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JK, Elliott LF (1985) Colonization of winter-wheat roots by inhibitory Rhizobacteria. Soil Sci Soc Am J 49:1172–1177

    Article  Google Scholar 

  • Fredrickson JK, Bezdicek DF, Brockman FJ, Li SW (1988) Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number-DNA hybridization procedure and antibiotic resistance. Appl Environ Microbiol 54:446–453

    PubMed  CAS  Google Scholar 

  • Furukawa K, Hayashida S, Taira K (1991) Gene-specific transposon mutagenesis of the biphenyl polychlorinated biphenyl-degradation-controlling Bph operon in soil bacteria. Gene 98:21–28

    Article  PubMed  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed  CAS  Google Scholar 

  • Glandorf DCM, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PAHM, Van Loon LC (2001) Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl Environ Microbiol 67:3371–3378

    Article  PubMed  CAS  Google Scholar 

  • Grey BE, Steck TR (2001) The viable but nonculturable state of Ralstonia solanacearum may be involved in long-term survival and plant infection. Appl Environ Microbiol 67:3866–3872

    Article  PubMed  CAS  Google Scholar 

  • Hagen M, Pühler A, Selbitschka W (1997) The persistence of bioluminescent Rhizobium meliloti strains L1 (RecA) and L33 (RecA+) in nonsterile microcosms depends on the soil type, on the cocultivation of the host legume alfalfa and on the presence of an indigenous Rhizobium meliloti population. Plant Soil 188:257–266

    Article  CAS  Google Scholar 

  • Halverson LJ, Clayton MK, Handelsman J (1993) Variable stability of antibiotic-resistance markers in Bacillus cereus Uw85 in the soybean rhizosphere in the field. Mol Ecol 2:65–78

    PubMed  CAS  Google Scholar 

  • Han HS, Nam HY, Koh YA, Hur JS, Jung JS (2003) Molecular bases of high-level streptomycin resistance in Pseudomonas marginalis and Pseudomonas syringae pv. acdnidiae. J Microbiol 41:16–21

    CAS  Google Scholar 

  • Hernalsteens JP, Holsters M, Silva A, Vanvliet F, Villarroel R, Engler G, Vanmontagu M, Schell J (1978) Technique for mutagenesis by transposon insertion, applicable to most Gram-negative bacteria. Arch Int Physiol Biol 86:432–434

    CAS  Google Scholar 

  • Herrera Cervera JA, Rodriguezalonso FI, Olivares J, Sanjuan J (1997) Evaluation of the RecA-based containment system in Rhizobium meliloti GR4. FEMS Microbiol Ecol 22:49–56

    Article  CAS  Google Scholar 

  • Hill KE, Top EM (1998) Gene transfer in soil systems using microcosms. FEMS Microbiol Ecol 25:319–329

    Article  CAS  Google Scholar 

  • Hirsch PR (1996) Population dynamics of indigenous and genetically modified rhizobia in the field. New Phytol 133:159–171

    Article  Google Scholar 

  • Hwang IY, Farrand SK (1994) A novel gene tag for identifying microorganisms released into the environment. Appl Environ Microbiol 60:913–920

    PubMed  CAS  Google Scholar 

  • Hwang I, Farrand SK (1997) Detection and enumeration of a tagged Pseudomonas fluorescens strain by using soil with markers associated with an engineered catabolic pathway. Appl Environ Microbiol 63:602–608

    PubMed  CAS  Google Scholar 

  • Jansson JK (1995) Tracking engineered microorganisms in nature. Curr Opin Biotechnol 6:275–283

    Article  PubMed  CAS  Google Scholar 

  • Jansson JK (2003) Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6:310–316

    Article  PubMed  CAS  Google Scholar 

  • Jansson JK, Van Elsas JD, Bailey MJ (2000) Tracking genetically-engineered microorganisms. Landes Bioscience, Georgetown, Texas

    Google Scholar 

  • Kaniga K, Davison J (1991) Transposon vectors for stable chromosomal integration of cloned genes in rhizosphere bacteria. Gene 100:201–205

    Article  PubMed  CAS  Google Scholar 

  • Kaur S (2000) Molecular approaches towards development of novel Bacillus thuringiensis biopesticides. World J Microbiol Biotechnol 16:781–793

    Article  CAS  Google Scholar 

  • Kinkle BK, Sadowsky MJ, Johnstone K, Koskinen WC (1994) Tellurium and selenium resistance in rhizobia and its potential use for direct isolation of Rhizobium meliloti from soil. Appl Environ Microbiol 60:1674–1677

    PubMed  CAS  Google Scholar 

  • Kluepfel DA, Kline EL, Skipper HD, Hughes TA, Gooden DT, Drahos DJ, Barry GF, Hemming BC, Brandt EJ (1991) The release and tracking of genetically engineered bacteria in the environment. Phytopathology 81:348–352

    Google Scholar 

  • Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim SH, Breuil C (2002) The use of the green fluorescent protein as a biomarker for sapstain fungi. Forest Pathol 32:153–161

    Article  CAS  Google Scholar 

  • Liang LN, Sinclair JL, Mallory LM, Alexander M (1982) Fate in model systems of microbial species of potential use in genetic engineering. Appl Environ Microbiol 44:708–714

    PubMed  CAS  Google Scholar 

  • Lilley AK, Bailey MJ, Barr M, Kilshaw K, Timms-Wilson TM, Day MJ, Norris SJ, Jones TH, Godfray HCJ (2003) Population dynamics and gene transfer in genetically modified bacteria in a model microcosm. Mol Ecol 12:3097–3107

    Article  PubMed  CAS  Google Scholar 

  • Lochner HH, Strijdom BW, Steyn PL (1991) Limitations of colony morphology and antibiotic-resistance in the identification of a Bradyrhizobium sp. (Lotus) strain in soil. Biol Fertil Soils 11:128–134

    Article  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577

    Article  PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton Leeuw Int J G 86:1–25

    Article  CAS  Google Scholar 

  • Ma WB, Zalec K, Glick BR (2001) Biological activity and colonization pattern of the bioluminescence-labeled plant growth-promoting bacterium Kluyvera ascorbata SUD165/26. FEMS Microbiol Ecol 35:137–144

    Article  PubMed  CAS  Google Scholar 

  • Macnaughton SJ, Rose DA, O’Donnell AG (1992) Persistence of xylE marker gene in Pseudomonas putida introduced into soils of different texture. J Gen Microbiol 138:667–673

    CAS  Google Scholar 

  • Mahillon J (1998) Transposons as gene haulers. Apmis 106:29–36

    Google Scholar 

  • Marroqui S, Zorreguieta A, Santamaria C, Temprano F, Soberon M, Megias M, Downie JA (2001) Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J Bacteriol 183:854–864

    Article  PubMed  CAS  Google Scholar 

  • Miethling R, Tebbe CC (2004) Resilience of a soil-established, genetically modified Sinorhizobium meliloti inoculant to soil management practices. Appl Soil Ecol 25:161–167

    Article  Google Scholar 

  • Molina L, Ramos C, Ronchel MC, Molin S, Ramos JL (1998) Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl Environ Microbiol 64:2072–2078

    PubMed  CAS  Google Scholar 

  • Molina L, Ramos C, Duque E, Ronchel MC, Garcia JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  CAS  Google Scholar 

  • Morrissey JP, Walsh UF, O’Donnell A, Moìnne-Loccoz Y, O’Gara F (2002) Exploitation of genetically modified inoculants for industrial ecology applications. Anton Leeuw Int J G 81:599–606

    Article  CAS  Google Scholar 

  • Mougel C, Cournoyer B, Nesme X (2001) Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil populations of Agrobacterium biovars 1 and 2. Appl Environ Microbiol 67:65–74

    Article  PubMed  CAS  Google Scholar 

  • Natarajan MR, Oriel P (1992) Transfer of transposon Tn916 from Bacillus subtilis into a natural soil population. Appl Environ Microbiol 58:2701–2703

    PubMed  CAS  Google Scholar 

  • Niemann S, Pühler A, Selbitschka W (1997) Growth and nodulation competitiveness of Sinorhizobium meliloti L1 (RecA is less than that of its isogenic strain L33 (RecA+) but comparable to that of two S. meliloti wild-type isolates. Appl Microbiol Biotechnol 47:525–529

    Article  CAS  Google Scholar 

  • Nuti MP, Russo A, Toffanin A, Casella S, Corich V, Squartini A, Giacomin A, Peruch U, Basaglia M (2003) What did we learn from 24 field releases of GMMs in Italy? In: Lelley T, Balazs E, Tepfer M (eds) Ecological impact of GMO dissemination in agro-ecosystems. Facultas Verlags-und Buchhandels AG, Wien, pp 45–54

    Google Scholar 

  • Obukowicz MG, Perlak FJ, Kusanokretzmer K, Mayer EJ, Bolton SL, Watrud LS (1986) Tn5-mediated integration of the delta-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing Pseudomonads. J Bacteriol 168:982–989

    PubMed  CAS  Google Scholar 

  • Olson BH, Ogunseitan OA, Rochelle PA, Tebbe CC, Tsai YL (1991) The implication of horizontal gene transfer for the environmental impact of genetically engineered microorganisms. In: Levin MA, Strauss HS (eds) Risk assessment in genetic engineering. Environmental release of organisms. McGraw-Hill Inc., New York, pp 163–188

    Google Scholar 

  • Peng R, Xiong A, Li X, Fuan H, Yao Q (2003) A delta-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity. Appl Microbiol Biotechnol 63:300–306

    Article  PubMed  CAS  Google Scholar 

  • Pillai SD, Pepper IL (1991) Transposon Tn5 as an identifiable marker in rhizobia — survival and genetic stability of Tn5mutant bean rhizobia under temperature stressed conditions in desert soils. Microb Ecol 21:21–33

    CAS  Google Scholar 

  • Prosser JI (1994) Molecular marker systems for the detection of genetically modified microorganisms in the environment. Microbiology 140:5–17

    Article  PubMed  CAS  Google Scholar 

  • Prosser JI, Killham K, Glover LA, Rattray EAS (1996) Luminescence-based systems for detection of bacteria in the environment. Crit Rev Biotechnol 16:157–183

    Article  PubMed  CAS  Google Scholar 

  • Prosser JI, Palomares AJ, Karp MT, Hill PJ (2000) Luminescence-based microbial marker systems and their application in microbial ecology. In: Jansson JK, Van Elsas JD, Bailey MJ (eds) Tracking genetically-engineered microorganisms. Landes Bioscience, Austin, Texas, pp 69–85

    Google Scholar 

  • Ramos C, Molina L, Molbak L, Ramos JL, Molin S (2000) A bioluminescent derivative of Pseudomonas putida KT2440 for deliberate release into the environment. FEMS Microbiol Ecol 34:91–102

    Article  PubMed  CAS  Google Scholar 

  • Rattray EAS, Prosser JI, Glover LA, Killham K (1995) Characterization of rhizosphere colonizationby luminescentEnterobacter cloacae at the populationand single-cell levels. Appl Environ Microbiol 61:2950–2957

    PubMed  CAS  Google Scholar 

  • Resca R, Basaglia M, Poggiolini S, Vian P, Bardin S, Walsh UF, Barreiros CME, O’Gara F, Nuti MP, Casella S, Peruch U (2001) An integrated approach for the evaluation of biological control of the complex Polymyxa betae beet necrotic yellow vein virus, by means of seed inoculants. Plant Soil 232:215–226

    Article  CAS  Google Scholar 

  • Reznikoff WS (1993) The Tn5 tansposon. Ann Rev Microbiol 47:945–963

    CAS  Google Scholar 

  • Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage RS, Sayler GS (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34:846–853

    Article  CAS  Google Scholar 

  • Robleto EA, Scupham AJ, Triplett EW (1997) Trifolitoxin production in Rhizobium etli strain CE3 increases competitiveness for rhizosphere colonization and root nodulation of Phaseolus vulgaris in soil. Mol Plant Microb Int 10:228–233

    Google Scholar 

  • Ryder M (1994) Key issues in the deliberate release of genetically-manipulated bacteria. FEMS Microbiol Ecol 15:139–145

    Article  CAS  Google Scholar 

  • Sanchez-Romero JM, Diaz-Orejas R, de Lorenzo V (1998) Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 64:4040–4046

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  PubMed  CAS  Google Scholar 

  • Schmidt O, Doube BM, Ryder MH, Killham K (1997) Population dynamics of Pseudomonas corrugata 2140R LUX8 in earthworm food and in earthworm casts. Soil Biol Biochem 29:523–528

    Article  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol R 62:775–806

    CAS  Google Scholar 

  • Schwartz E, Trinh SV, Scow KM (2000) Measuring growth of a phenanthrene-degrading bacterial inoculum in soil with a quantitative competitive polymerase chain reaction method. FEMS Microbiol Ecol 34:1–7

    Article  PubMed  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) — linking of 16S rRNA genebased single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556–3565

    Article  PubMed  CAS  Google Scholar 

  • Schwieger F, Willke B, Munch JC, Tebbe CC (1997) Ecological pre-release risk assessment of two genetically engineered, bioluminescent Rhizobium meliloti strains in soil column model systems. Biol Fertil Soils 25:340–348

    Article  Google Scholar 

  • Schwieger F, Dammann-Kalinowski T, Dresing U, Selbitschka W, Munch JC, Pühler A, Keller M, Tebbe CC (2000) Field lysimeter investigation with luciferase-gene (luc)-tagged Sinorhizobium meliloti strains to evaluate the ecological significance of soil inoculation and a recA-mutation. Soil Biol Biochem 32:859–868

    Article  CAS  Google Scholar 

  • Scupham AJ, Bosworth AH, Ellis WR, Wacek TJ, Albrecht KA, Triplett EW (1996) Inoculation with Sinorhizobiummeliloti RMBPC-2 increases alfalfa yield compared with inoculation with a nonengineered wild-type strain. Appl Environ Microbiol 62:4260–4262

    PubMed  CAS  Google Scholar 

  • Selbitschka W, Pühler A, Simon R (1992) The construction of recA deficient containment Rhizobiummeliloti and R. leguminosarum strains marked with gusA or luc cassettes for use in risk assessment studies. Mol Ecol 1:9–19

    CAS  Google Scholar 

  • Selbitschka W, Dresing U, Hagen M, Niemann S, Pühler A (1995a) A biological containment system for Rhizobium meliloti based on the use of recombination-deficient (RecA) strains. FEMS Microbiol Ecol 16:223–232

    CAS  Google Scholar 

  • Selbitschka W, Jording D, Niemann S, Schmidt R, Pühler A, Mendum T, Hirsch P (1995b) Construction and characterization of a Rhizobium leguminosarum biovar viciae strain designed to assess horizontal gene transfer in the environment. FEMS Microbiol Lett 128:255–263

    Article  PubMed  CAS  Google Scholar 

  • Selbitschka W, Keller M, Tebbe CC, Pühler A (2003) Leuchtmarkierte Zellen von Sinorhizobium im Boden: Freisetzung gentechnisch veränderter Bakterien. Biologie in unserer Zeit 33:162–175

    Article  CAS  Google Scholar 

  • Sessitsch A, Wilson KJ, Akkermans ADL, De Vos WM (1996) Simultaneous detection of different Rhizobium strains marked with either the Escherichia coli gusA gene or the Pyrococcus furiosus celB gene. Appl Environ Microbiol 62:4191–4194

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Hardarson G, deVos WM, Wilson KJ (1998) Use ofmarker genes in competition studies of Rhizobium. Plant Soil 204:35–45

    Article  CAS  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero E (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1:784–791

    Article  CAS  Google Scholar 

  • Simon R, Quandt J, Klipp W (1989) New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169

    Article  PubMed  CAS  Google Scholar 

  • Soberon M, Lopez O, Morera C, Girard MD, Tabche ML, Mirand J (1999) Enhanced nitrogen fixation in a Rhizobium etli ntrC mutant that overproduces the Bradyrhizobium japonicum symbiotic terminal oxidase cbb3. Appl Environ Microbiol 65:2015–2019

    PubMed  CAS  Google Scholar 

  • Staley TE, Lawrence EG, Drahos DJ (1997) Variable specificity of Tn7::lacZY insertion into the chromosome of root-colonizing Pseudomonas putida strains. Mol Ecol 6:85–87

    Article  CAS  Google Scholar 

  • Stoppel RD, Schlegel HG (1995) Nickel-resistant bacteria from anthropogenically nickelpolluted and naturally nickel-percolated ecosystems. Appl Environ Microbiol 61:2276–2285

    PubMed  CAS  Google Scholar 

  • Takahashi M, Maraboeuf F, Norden B (1996) Locations of functional domains in the RecA protein — overlap of domains and regulation of activities. Eu. J Biochem 242:20–28

    Article  CAS  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115

    Article  PubMed  CAS  Google Scholar 

  • Tebbe CC (2000) Use of luc-tagged genetically modified microorganisms (GMMs) to study rhizobial ecology in soil columns, field lysimeters and field plots. In: Jansson JK, Van Elsas JD, Bailey MJ (eds) Tracking genetically-engineered microorganisms. Landes Bioscience, Georgetown, Texas, pp 127–137

    Google Scholar 

  • Thompson IP, Ellis RJ, Bailey MJ (1995a) Autecology of a genetically-modified fluorescent pseudomonad on sugar-beet. FEMS Microbiol Ecol 17:1–13

    Article  CAS  Google Scholar 

  • Thompson IP, Lilley AK, Ellis RJ, Bramwell PA, Bailey MJ (1995b) Survival, colonization and dispersal of genetically-modified Pseudomonas fluorescens Sbw25 in the phytosphere of field-grown sugar-beet. Bio/Technology 13:1493–1497

    Article  CAS  Google Scholar 

  • Tombolini R, Unge A, Davey ME, de Bruijn FJ, Jansson JK (1997) Flow cytometric and microscopic analysis of GFP-tagged Pseudomonas fluorescens bacteria. FEMS Microbiol Ecol 22:17–28

    Google Scholar 

  • Trevors JT, Van Elsas JD, Van Overbeek LS, Starodub ME (1990) Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm. Appl Environ Microbiol 56:401–408

    PubMed  CAS  Google Scholar 

  • Udayasuriyan V, Nakamura A, Masaki H, Uozumi T (1995) Transfer of an insecticidal protein gene of Bacillus thuringiensis into plant-colonizing Azospirillum. Worl. J Microbiol Biotechnol 11:163–167

    Article  CAS  Google Scholar 

  • Unge A, Jansson J (2001) Monitoring population size, activity, and distribution of gfpluxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microb Ecol 41:290–300

    PubMed  CAS  Google Scholar 

  • Unge A, Tombolini R, Davey ME, de Bruijn FJ, Jansson JK (1998) GFP as a marker gene. In: Akkermans ADL, Van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, 6.1.13, pp 1–16

    Google Scholar 

  • Unge A, Tombolini R, Molbak L, Jansson JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 65:813–821

    PubMed  CAS  Google Scholar 

  • Vahjen W, Munch JC, Tebbe CC (1997) Fate of three genetically engineered, biotechnologically important microorganism species in soil: impact of soil properties and intraspecies competition with nonengineered strains. Can J Microbiol 43:827–834

    Article  CAS  Google Scholar 

  • Van Dillewijn P, Soto MJ, Villadas PJ, Toro N (2001) Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation. Appl Environ Microbiol 67:3860–3865

    Article  PubMed  Google Scholar 

  • Van Dillewijn P, Villadas PJ, Toro N (2002) Effect of a Sinorhizobium meliloti strain with a modified putA gene on the rhizosphere microbial community of alfalfa. Appl Environ Microbiol 68:4201–4208

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas JD, Dijkstra AF, Govaert JM, Van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into 2 soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160

    Article  Google Scholar 

  • Van Elsas JD, Duarte GF, Rosado AS, Smalla K (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 32:133–154

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, Van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118

    Article  PubMed  CAS  Google Scholar 

  • Voget S, Leggewie C, Uesbeck A, Raasch C, Jaeger KE, Streit WR (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol 69:6235–6242

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Baker PW (2000) Environmentally relevant microorganisms. J Biosci Bioeng 89:1–11

    Article  PubMed  CAS  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Wendlan J (2003) PCR-based methods facilitate targeted gene manipulations and cloning procedures. Curr Genet 44:115–123

    Article  CAS  Google Scholar 

  • Wilson KJ (1995) Molecular techniques for the study of rhizobial ecology in the field. Soil Biol Biochem 27:501–514

    Article  CAS  Google Scholar 

  • Wilson KJ, Sessitsch A, Akkermans A (1994) Molecular markers as tools to study the ecology of microorganisms. In: Ritz K, Dighton J, Giller KE (eds) Beyond biomass. Compositional and functional analysis of soil microbial communities. John Wiley & Sons, Chichester, pp 149–156

    Google Scholar 

  • Wilson KJ, Sessitsch A, Corbo JC, Giller KE, Akkermans ADL, Jefferson RA (1995) Beta-glucuronidase (gus) transposons for ecological and genetic studies of rhizobia and other Gram-negative bacteria. Microbiology-UK 141:1691–1705

    Article  CAS  Google Scholar 

  • Xi CW, Lambrecht M, Vanderleyden J, Michiel J (1999) Bi-functional gfp-and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J Microbiol Methods 35:85–92

    Article  PubMed  CAS  Google Scholar 

  • Zanaroli G, Fedi S, Carnevali M, Fava F, Zannoni D (2002) Use of potassium tellurite for testing the survival and viability of Pseudomonas pseudoalcaligenes KF707 in soil microcosms contaminated with polychlorinated biphenyls. Res Microbiol 153:353–360

    Article  PubMed  CAS  Google Scholar 

  • Zhu GY, Dobbelaere S, Vanderleyden J (2002) Use of green fluorescent protein to visualize rice root colonization by Azospirillum irakense and A. brasilense. Funct Plant Biol 29:1279–1285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tebbe, C.C., Miethling-Graff, R. (2006). Marker Genes As Tools To Study Deliberately Released Soil Bacteria. In: Nannipieri, P., Smalla, K. (eds) Nucleic Acids and Proteins in Soil. Soil Biology, vol 8. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29449-X_18

Download citation

Publish with us

Policies and ethics