Skip to main content

The GEOsensor Project: Rotations — a New Observable for Seismology

  • Chapter
Observation of the Earth System from Space

Summary

Over the last 40 years ring laser gyroscopes became one of the most important instruments in the field of inertial navigation and precise rotation measurements. They have a high resolution for angular velocities, a very good scale factor stability and a wide dynamic range. These properties made them suitable for aircraft and autonomous submarine navigation. Over the last decade we have developed several very large perimeter ring laser gyroscopes for the application in geodesy and geophysics (Schreiber et al., 2001). Because of a substantial upscaling of these ring lasers, their sensitivity to rotations has been increased by at least 5 orders of magnitudes. At the same time the instrumental drift was reduced by about the same amount. This progress in rotational sensor technology led to the successful detection of rotational signals caused by earthquakes (Pancha et al., 2000) several thousands kilometers away. These observations stimulated the development of a highly sensitive ring laser gyro for specific seismological applications. The GEOsensor provides rotational motions along with the usual translational motions at a high data acquisition rate of at least 20 Hz. Observations of seismic induced rotations show that they are consistent in phase and amplitude with the collocated recordings of transverse accelerations obtained from a standard seismometer over a wide range of distances and frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., Richards, P. G. (2002) Quantitative Seismology, 2nd Edition, University Science Books

    Google Scholar 

  • Aronowitz, F. (1971) The laser gyro. Laser applications, Vol. 1, edited by M. Ross, 133–200, Academic Press, New York

    Google Scholar 

  • Bouchon, M., and Aki, K. (1982) Strain, tilt and rotation associated with strong ground motion in the vicinity of earthquake faults. Bull. Seismol. Soc. Amer., 72:1717–1738

    Google Scholar 

  • Cochard, A., Igel, H. (2003) What can rotational measurements teach us about earthquake rupture histories? Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract S42D-0200

    Google Scholar 

  • Cochard, A., Igel, H. (2004) What can rotational measurements teach us about earthquake rupture histories? Geophysical Research Abstracts (EGU Meeting), 6, 06359

    Google Scholar 

  • Cochard, A., Igel, H., Flaws, A., Schuberth, B., Wassermann, J., Suryanto, W. (2005) Rotational motions in seismology, in preparation, to be published in “Earthquake source asymmetry, structural media and rotation effects” eds. Teisseyre et al., Springer Verlag

    Google Scholar 

  • Igel, H., Nissen-Meyer, T., Jahnke, G. (2002) Wave propagation in 3-D spherical section: effects of subduction zones, Phys. Earth. Planet. Int., 132:219–234

    Article  Google Scholar 

  • Igel, H., Flaws, A., Velikoseltsev, A., Cochard, A., Schreiber, K. U. (2004) Comparison of rotational and translational motions induced by distant large earthquakes, Geophysical Research Abstracts (EGU Meeting), 6, 06487

    Google Scholar 

  • Igel, H., Schreiber, K. U., Flaws, A., Schuberth, B., Velikoseltsev, A. Cochard, A. (2005a) Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003, Geophys. Res. Lett., VOL. 32, L08309, doi:10.1029/2004GL022336

    Article  Google Scholar 

  • Igel, H., Cochard, A., Schuberth, B., Flaws, A. Velikoseltsev, A., Schreiber K. U. (2005b) Rotational ground motions: a new observable for seismology? Geophysical Research Abstracts (EGU Meeting), 7

    Google Scholar 

  • Komatitsch, D., Tromp, J. (2002a) Spectral-element simulations of global seismic wave propagation, Part I: Validation, Geophys. J. Int., 149:390–412

    Google Scholar 

  • Komatitsch, D., Tromp, J. (2002b) Spectral-element simulations of global seismic wave propagation, Part II: 3-D models, oceans, rotation, and gravity, Geophys. J. Int., 150:303–318

    Google Scholar 

  • McLeod, D. P., Stedman, G. E., Webb, T. H., Schreiber K. U. (1998) Comparison of standard and ring laser rotational seismograms, Bull. Seism. Soc. Amer., 88:1495–1503

    Google Scholar 

  • McLeod, D. P., King, B. T., Stedman, G. E., Schreiber, K. U., and Webb T. H. (2001) Autoregressive analysis for the detection of earthquakes with a ring laser gyroscope; Fluctuations and Noise Letters, Vol. 1, No. 1:R41–R50

    Article  Google Scholar 

  • Mikumo, T., Aki, K. (1973) Determination of local phase velocity by intercomparison of seismograms from strain and pendulum instruments, J. Geophys. Res., 69: 721–731

    Article  Google Scholar 

  • Pancha, A., Webb, T.H., Stedman, G. E., McLeod, D.P., and Schreiber, U. (2000) Ring laser detection of rotations from teleseismic waves. Geophys. Res. Lett, 27:3553–3556

    Article  Google Scholar 

  • Schreiber, U., Schneider, M., Rowe, C.H., Stedman, G. E., and Schlüter, W. (2001) Aspects of Ring Lasers as Local Earth Rotation Sensors. Surveys in Geophysics, Vol. 22:(5–6) 603–611

    Article  Google Scholar 

  • Schreiber, U., Velikoseltsev, A., Stedman, G. E., Hurst, R. B., Klügel, T. (2004) Large Ring Laser Gyros as High Resolution Sensors for Applications in Geoscience. Proceedings of the 11th International Conference on Integrated Navigation Systems, St. Petersburg, 326–331

    Google Scholar 

  • Schuberth, B., Igel, H., Wassermann, J., Cochard, A., Schreiber, K. U. (2004) Rotational Motions from Teleseismic Events-Modelling and Observations, Eos Trans. AGU, Fall Meet. Suppl. Abstract S42D-0200

    Google Scholar 

  • Stedman, G. E., Li, Z., Bilger, H. R. (1995) Sideband analysis and seismic detection in large ring lasers. Appl. Opt., 34:7390–7396

    Article  Google Scholar 

  • Stedman, G. E. (1997) Ring laser tests of fundamental physics and geophysics. Rep. Progr. Phys. 60:615–688

    Article  Google Scholar 

  • Takeo, M., Ito, H. M. (1997) What can be learned from rotational motions excited by earthquakes? Geophys. J. Int., 129:319–329

    Google Scholar 

  • Takeo, M. (1998) Ground rotational motions recorded in near-source region of earthquakes, Geophys. Res. Lett., 25:789–792

    Article  Google Scholar 

  • Trifunac, M. D., Todorovska, M. I. (2001) A note on the usable dynamic range of accelerographs recording translation, Soil Dyn. Earth. Eng., 21(4):275–286

    Article  Google Scholar 

  • Wielandt, E. (1993) Propagation and structural interpretation of non-plane waves, Geophys. J. Int., 113: 45–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, U. et al. (2006). The GEOsensor Project: Rotations — a New Observable for Seismology. In: Flury, J., Rummel, R., Reigber, C., Rothacher, M., Boedecker, G., Schreiber, U. (eds) Observation of the Earth System from Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29522-4_28

Download citation

Publish with us

Policies and ethics