Skip to main content

Innate Host Defense of Human Vaginal and CervicalMucosae

  • Chapter
Antimicrobial Peptides and Human Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 306))

Abstract

Host defense responses of the human female genital tract mucosa to pathogenic microbes and viruses are mediated in part by the release of antimicrobial substances into the overlying mucosal fluid. While host defense has long been considered a prominent function of vaginal and cervical mucosae, evidence that cationic antimicrobial peptides and proteins have fundamental roles in the innate host defense of this tissue has only recently become available. This chapter explores elements of the physical and chemical defense barriers of the cervicovaginal mucosa, which protect against infections of the lower genital tract. Cationic antimicrobial and antiviral polypeptide components of cervicovaginal fluid are discussed in detail, with special emphasis placed on the defensin family of peptides as well as polypeptides that are active against viruses such as HIV-1. The reader should be cognizant that each polypeptide by itself does not provide complete protection of the genital tract. On the contrary, the abundance and multiplicity of antimicrobial peptides and proteins suggest protection of the cervicovaginal mucosa may be best realized from the aggregate effector molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuja PM, Zenz A, Trabi M, Craik DJ, Lohner K (2004) The cyclic antimicrobial peptide RTD-1 induces stabilized lipid-peptide domains more efficiently than its open-chain analogue. FEBS Lett 566:301–306

    PubMed  CAS  Google Scholar 

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A 92:195–199

    PubMed  CAS  Google Scholar 

  • Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jornvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96:3086–3093

    PubMed  CAS  Google Scholar 

  • Agnew KJ, Hillier SL (1995) The effect of treatment regimens for vaginitis and cervicitis on vaginal colonization by lactobacilli. Sex Transm Dis 22:269–273

    PubMed  CAS  Google Scholar 

  • Aho HJ, Grenman R, Sipila J, Peuravuori H, Hartikainen J, Nevalainen TJ (1997) Group II phospholipase A2 in nasal fluid, mucosa and paranasal sinuses. Acta Otolaryngol (Stockh) 117:860–863

    CAS  Google Scholar 

  • Alcouloumre MS, Ghannoum MA, Ibrahim AS, Selsted ME, Edwards JEJ (1993) Fungicidal properties of defensin NP-1 and activity against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother 37:2628–2632

    PubMed  CAS  Google Scholar 

  • Aley SB, Zimmerman M, Hetsko M, Selsted ME, Gillin FD (1994) Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides. Infect Immun 62:5397–5403

    PubMed  CAS  Google Scholar 

  • Andersen JH, Osbakk SA, Vorland LH, Traavik T, Gutteberg TJ (2001) Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51:141–149

    PubMed  CAS  Google Scholar 

  • Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ (1982) Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation. Infect Immun 35:792–799

    PubMed  CAS  Google Scholar 

  • Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, Simoes JA, Gurguis A, Faro S (2001) Defense factors of vaginal lactobacilli. Am J Obstet Gynecol 185:375–379

    PubMed  CAS  Google Scholar 

  • Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ (2000) Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 1:113–118

    PubMed  CAS  Google Scholar 

  • Bals R (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1:141–150

    PubMed  CAS  Google Scholar 

  • Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 95:9541–9546

    PubMed  CAS  Google Scholar 

  • Balu RB, Savitz DA, Ananth CV, Hartmann KE, Miller WC, Thorp JM, Heine RP (2002) Bacterial vaginosis and vaginal fluid defensins during pregnancy. Am J Obstet Gynecol 187:1267–1271

    PubMed  CAS  Google Scholar 

  • Balu RB, Savitz DA, Ananth CV, Hartmann KE, Miller WC, Thorp JM, Heine RP (2003) Bacterial vaginosis, vaginal fluid neutrophil defensins, and preterm birth. Obstet Gynecol 101:862–868

    PubMed  CAS  Google Scholar 

  • Barousse MM, Steele C, Dunlap K, Espinosa T, Boikov D, Sobel JD, Fidel PL Jr (2001) Growth inhibition of Candida albicans by human vaginal epithelial cells. J Infect Dis 184:1489–1493

    PubMed  CAS  Google Scholar 

  • Becker MN, Diamond G, Verghese MW, Randell SH (2000) CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J Biol Chem 275:29731–29736

    PubMed  CAS  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the Nterminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479

    PubMed  CAS  Google Scholar 

  • Bensch KW, Raida M, Magert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335

    PubMed  CAS  Google Scholar 

  • Bevins CL (2004) The Paneth cell and the innate immune response. Curr Opin Gastroenterol 20:572–580

    PubMed  Google Scholar 

  • Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029

    PubMed  CAS  Google Scholar 

  • Birchler T, Seibl R, Buchner K, Loeliger S, Seger R, Hossle JP, Aguzzi A, Lauener RP (2001) Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur J Immunol 31:3131–3137

    PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Gabrielsen TO, Dale I, Muller F, Steinbakk M, Fagerhol MK (1995) The leucocyte protein L1 (calprotectin): a putative nonspecific defence factor at epithelial surfaces. Adv Exp Med Biol 371A:201–206

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    PubMed  CAS  Google Scholar 

  • Brown D Jr (2004) Clinical variability of bacterial vaginosis and trichomoniasis. J Reprod Med 49:781–786

    PubMed  Google Scholar 

  • Brunham RC, Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149–161

    PubMed  CAS  Google Scholar 

  • Bullen JJ, Armstrong JA (1979) The role of lactoferrin in the bactericidal function of polymorphonuclear leucocytes. Immunology 36:781–791

    PubMed  CAS  Google Scholar 

  • Cates W Jr (1999) Estimates of the incidence and prevalence of sexually transmitted diseases in the United States. American Social Health Association Panel. Sex Transm Dis 26: S2–S7

    PubMed  Google Scholar 

  • Chang JH, Ryang YS, Morio T, Lee SK, Chang EJ (2004) Trichomonas vaginalis inhibits proinflammatory cytokine production in macrophages by suppressing NF-kappaB activation. Mol Cells 18:177–185

    PubMed  CAS  Google Scholar 

  • Chang TL, Francois F, Mosoian A, Klotman ME (2003) CAF-mediated human immunodeficiency virus (HIV) type 1 transcriptional inhibition is distinct from alpha-defensin-1 HIV inhibition. J Virol 77:6777–6784

    PubMed  CAS  Google Scholar 

  • Chang TL, Vargas J Jr, DelPortillo A, Klotman ME (2005) Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest 115:765–773

    PubMed  CAS  Google Scholar 

  • Chapple DS, Joannou CL, Mason DJ, Shergill JK, Odell EW, Gant V, Evans RW (1998) A helical region on human lactoferrin. Its role in antibacterial pathogenesis. Adv Exp Med Biol 443:215–220

    PubMed  CAS  Google Scholar 

  • Chen FY, Lee MT, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84:3751–3758

    PubMed  CAS  Google Scholar 

  • Cherpes TL, Meyn LA, Krohn MA, Lurie JG, Hillier SL (2003) Association between acquisition of herpes simplex virus type 2 in women and bacterial vaginosis. Clin Infect Dis 37:319–325

    PubMed  Google Scholar 

  • Chimura T, Hirayama T, Takase M (1993) Lysozyme in cervicalmucus of patients with chorioamnionitis. Jpn J Antibiot 46:726–729

    PubMed  CAS  Google Scholar 

  • Cibley LJ, Cibley LJ (1991) Cytolytic vaginosis. Am J Obstet Gynecol 165:1245–1249

    PubMed  CAS  Google Scholar 

  • Clohessy PA, Golden BE (1996) Themechanism of calprotectin’s candidastatic activity appears to involve zinc chelation. Biochem Soc Trans 24:309S

    PubMed  CAS  Google Scholar 

  • Cole AM, Dewan P, Ganz T (1999) Innate antimicrobial activity of nasal secretions. Infect Immun 67:3267–3275

    PubMed  CAS  Google Scholar 

  • Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin: a primate peptide that protects cells from infection by T-and M-tropic strains of HIV-1. Proc Natl Acad Sci U S A 99:1813–1818

    PubMed  CAS  Google Scholar 

  • Cowland JB, Johnsen AH, Borregaard N (1995) hCAP-18, a cathelin/pro-bactenecinlike protein of human neutrophil specific granules. FEBS Lett 368:173–176

    PubMed  CAS  Google Scholar 

  • Daher KA, Selsted ME, Lehrer RI (1986) Direct inactivation of viruses by human granulocyte defensins. J Virol 60:1068–1074

    PubMed  CAS  Google Scholar 

  • Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A 88:3952–3956

    PubMed  CAS  Google Scholar 

  • Draper DL, Landers DV, Krohn MA, Hillier SL, Wiesenfeld HC, Heine RP (2000) Levels of vaginal secretory leukocyte protease inhibitor are decreased in women with lower reproductive tract infections. Am J Obstet Gynecol 183:1243–1248

    PubMed  CAS  Google Scholar 

  • Duits LA, Ravensbergen B, Rademaker M, Hiemstra PS, Nibbering PH (2002) Expression of beta-defensin 1 and 2 mRNA by human monocytes, macrophages and dendritic cells. Immunology 106:517–525

    PubMed  CAS  Google Scholar 

  • Duits LA, Nibbering PH, van Strijen E, Vos JB, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS (2003) Rhinovirus increases human beta-defensin-2 and-3 mRNA expression in cultured bronchial epithelial cells. FEMS Immunol Med Microbiol 38:59–64

    PubMed  CAS  Google Scholar 

  • Edwards JL, Apicella MA (2004) The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17:965–981

    PubMed  CAS  Google Scholar 

  • Edwards L (2004) The diagnosis and treatment of infectious vaginitis. Dermatol Ther 17:102–110

    PubMed  Google Scholar 

  • Ellison RT3, Giehl TJ (1991) Killing of Gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    PubMed  CAS  Google Scholar 

  • Faurschou M, Kamp S, Cowland JB, Udby L, Johnsen AH, Calafat J, Winther H, Borregaard N (2005) Prodefensins are matrix proteins of specific granules in human neutrophils. J Leukoc Biol 78:785–793

    PubMed  CAS  Google Scholar 

  • Fidel PL Jr (2004) History and new insights into host defense against vaginal candidiasis. Trends Microbiol 12:220–227

    PubMed  CAS  Google Scholar 

  • Fidel PL Jr (2005) Immunity in vaginal candidiasis. Curr Opin Infect Dis 18:107–111

    PubMed  Google Scholar 

  • Fidel PL Jr, Barousse M, Espinosa T, Ficarra M, Sturtevant J, Martin DH, Quayle AJ, Dunlap K (2004) An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun 72:2939–2946

    PubMed  Google Scholar 

  • Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc Lond [Biol] 93:306–317

    Google Scholar 

  • Frohm NM, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stahle-Backdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67:2561–2566

    Google Scholar 

  • Ganz T (1999) Defensins and host defense. Science 286:420–421

    PubMed  CAS  Google Scholar 

  • Ganz T (2001) Defensins in the urinary tract and other tissues. J Infect Dis 183[Suppl 1]:S41–S42

    PubMed  CAS  Google Scholar 

  • Ganz T (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen 8:209–217

    PubMed  CAS  Google Scholar 

  • Ganz T, Lehrer RI (1994) Defensins. Curr Opin Immunol 6:584–589

    PubMed  CAS  Google Scholar 

  • Ganz T, Lehrer RI (1997) Antimicrobial peptides of leukocytes. Curr Opin Hematol 4:53–58

    PubMed  CAS  Google Scholar 

  • Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    PubMed  CAS  Google Scholar 

  • Gazit E, Miller IR, Biggin PC, Sansom MS, Shai Y (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258:860–870

    PubMed  CAS  Google Scholar 

  • Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL (2002) Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3:583–590

    PubMed  CAS  Google Scholar 

  • Ghosh SK, Zhao J, Philogene MC, Alzaharani A, Rane S, Banerjee A (2004) Pathogenic consequences of Neisseria gonorrhoeae pilin glycan variation. Microbes Infect 6:693–701

    PubMed  CAS  Google Scholar 

  • Grouard G, Clark EA (1997) Role of dendritic and follicular dendritic cells in HIV infection and pathogenesis. Curr Opin Immunol 9:563–567

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroeder J-M (1997) A peptide antibiotic from human skin. Nature 387:861–862

    PubMed  CAS  Google Scholar 

  • Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713

    PubMed  CAS  Google Scholar 

  • Harmsen MC, Swart PJ, de Bethune MP, Pauwels R, De Clercq E, The TH, Meijer DK (1995) Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J Infect Dis 172:380–388

    PubMed  CAS  Google Scholar 

  • Harwig SS, Park AS, Lehrer RI (1992) Characterization of defensin precursors in mature human neutrophils. Blood 79:1532–1537

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Motsuchi W, Tanaka S, Dosako S (1994) Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol 47:73–85

    PubMed  CAS  Google Scholar 

  • Hashemi FB, Mollenhauer J, Madsen LD, Sha BE, Nacken W, Moyer MB, Sorg C, Spear GT (2001) Myeloid-related protein (MRP)-8 from cervico-vaginal secretions activates HIV replication. AIDS 15:441–449

    PubMed  CAS  Google Scholar 

  • Hein M, Valore EV, Helmig RB, Uldbjerg N, Ganz T (2002) Antimicrobial factors in the cervical mucus plug. Am J Obstet Gynecol 187:137–144

    PubMed  Google Scholar 

  • Helmig R, Uldbjerg N, Ohlsson K (1995) Secretory leukocyte protease inhibitor in the cervical mucus and in the fetal membranes. Eur J Obstet Gynecol Reprod Biol 59:95–101

    PubMed  CAS  Google Scholar 

  • Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (2003) Activation of Toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826

    PubMed  CAS  Google Scholar 

  • Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64:4520–4524

    PubMed  CAS  Google Scholar 

  • Hillier SL (1999) Normal vaginal flora. In: Holmes KK et al (eds) Sexually transmitted diseases. McGraw-Hill, New York, pp 191–204

    Google Scholar 

  • Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108:925–944

    PubMed  CAS  Google Scholar 

  • Hobbs JA, May R, Tanousis K, McNeill E, Mathies M, Gebhardt C, Henderson R, Robinson MJ, Hogg N (2003) Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol 23:2564–2576

    PubMed  CAS  Google Scholar 

  • Horowitz BJ, Mardh PA, Nagy E, Rank EL (1994) Vaginal lactobacillosis. Am J Obstet Gynecol 170:857–861

    PubMed  CAS  Google Scholar 

  • Hughes AL (1999) Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci 56:94–103

    PubMed  CAS  Google Scholar 

  • Ibrahim HR, Matsuzaki T, Aoki T (2001) Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett 506:27–32

    PubMed  CAS  Google Scholar 

  • Joiner KA, Ganz T, Albert J, Rotrosen D (1989) The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 109:2771–2782

    PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    PubMed  CAS  Google Scholar 

  • Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the humanbowel. FEBS Lett 315:187–192

    PubMed  CAS  Google Scholar 

  • Kossel A (1896) Uber die basichen Stoffe des Zellkerns. Z Ohysiol Chem 22:176–190

    Google Scholar 

  • Laible NJ, Germaine GR (1985) Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun 48:720–728

    PubMed  CAS  Google Scholar 

  • Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297

    PubMed  CAS  Google Scholar 

  • Lee-Huang S, Huang PL, Sun Y, Huang PL, Kung HF, Blithe DL, Chen HC (1999) Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci U S A 96:2678–2681

    PubMed  CAS  Google Scholar 

  • Lee-Huang S, Maiorov V, Huang PL, Ng A, Lee HC, Chang YT, Kallenbach N, Huang PL, Chen HC (2005) Structural and functional modeling of human lysozyme reveals a unique nonapeptide, HL9, with anti-HIV activity. Biochemistry 44:4648–4655

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Daher K, Ganz T, Selsted ME (1985a) Direct inactivation of viruses by MCP-1 and MCP-2, natural peptide antibiotics from rabbit leukocytes. J Virol 54:467–472

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Szklarek D, Ganz T, Selsted ME (1985b) Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity. Infect Immun 49:207–211

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Ganz T, Szklarek D, Selsted ME (1988) Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. J Clin Invest 81:1829–1835

    PubMed  CAS  Google Scholar 

  • Lehrer RI, Bevins CL, Ganz T (1999) Defensins and other antimicrobial peptides. In: Ogra PL, Mestecky J, Lamm ME, Strober W, Bienenstock J, McGhee JR (eds) Mucosal immunology. Academic Press, San Diego, pp 89–99

    Google Scholar 

  • Leonova L, Kokryakov VN, Aleshina GM, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464

    PubMed  CAS  Google Scholar 

  • Liu L, Zhao C, Heng HHQ, Ganz T (1997) The human β-defensin-1 and α-defensins are encoded by adjacent genes: two peptide families with differing disulfide topology share a common ancestry. Genomics 43:316–32

    PubMed  CAS  Google Scholar 

  • Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35:13723–13728

    PubMed  CAS  Google Scholar 

  • Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) Alphadefensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS 17:F23–F32

    PubMed  CAS  Google Scholar 

  • Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A (1996) Change inmembrane permeability induced by protegrin 1: implication of disulphide bridges for pore formation. FEBS Lett 383:93–98

    PubMed  CAS  Google Scholar 

  • Manitz MP, Horst B, Seeliger S, Strey A, Skryabin BV, Gunzer M, Frings W, Schonlau F, Roth J, Sorg C, Nacken W (2003) Loss of S100A9 (MRP14) Results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro. Mol Cell Biol 23:1034–1043

    PubMed  CAS  Google Scholar 

  • Matsuzaki K (2001) Why and how are peptide-lipid interactions utilized for self defence? Biochem Soc Trans 29:598–601

    PubMed  CAS  Google Scholar 

  • McCray PB, Bentley L (1997) Human airway epithelia express a β-defensin. Am J Respir Cell Mol Biol 16:343–349

    PubMed  CAS  Google Scholar 

  • McGregor JA, French JI (2000) Bacterial vaginosis in pregnancy. Obstet Gynecol Surv 55:S1–S19

    PubMed  CAS  Google Scholar 

  • McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 96:456–464

    PubMed  CAS  Google Scholar 

  • McNeely TB, Shugars DC, Rosendahl M, Tucker C, Eisenberg SP, Wahl SM (1997) Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90:1141–1149

    PubMed  CAS  Google Scholar 

  • Meredith SD, Raphael GD, Baraniuk JN, Banks SM, Kaliner MA (1989) The pathophysiology of rhinitis. III. The control of IgG secretion. J Allergy Clin Immunol 84:920–930

    PubMed  CAS  Google Scholar 

  • Miller BF, Abrams R, Dorfman A, Klein M (1942) Antibacterial properties of protamine and histone. Science 96:428–430

    CAS  Google Scholar 

  • Monell CR, Strand M (1994) Structural and functional similarities between synthetic HIV gp41 peptides and defensins. Clin Immunol Immunopathol 71:315–324

    PubMed  CAS  Google Scholar 

  • Morrison GM, Davidson DJ, Dorin JR (1999) A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 442:112–116

    PubMed  CAS  Google Scholar 

  • Münk C, Wei G, Yang OO, Waring AJ, Wang W, Hong T, Lehrer RI, Landau NR, Cole AM (2003) The theta-defensin, retrocyclin, inhibits HIV-1 entry. AIDS Res Hum Retroviruses 19:875–881

    PubMed  Google Scholar 

  • Nakashima H, Yamamoto N, Masuda M, Fujii N (1993) Defensins inhibit HIV replication in vitro (letter). AIDS 7:1129

    PubMed  CAS  Google Scholar 

  • Negroni P, Fischer I (1944) Antibiotic action of protamines and histones. Rev Soc Argentina Biol 20:307–314

    CAS  Google Scholar 

  • Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    PubMed  CAS  Google Scholar 

  • Niyonsaba F, Iwabuchi K, Matsuda H, Ogawa H, Nagaoka I (2002) Epithelial cell-derived human beta-defensin-2 acts as a chemotaxin for mast cells through a pertussis toxin-sensitive and phospholipase C-dependent pathway. Int Immunol 14:421–426

    PubMed  CAS  Google Scholar 

  • Ogata K, Linzer BA, Zuberi RI, Ganz T, Lehrer RI, Catanzaro A (1992) Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun 60:4720–4725

    PubMed  CAS  Google Scholar 

  • Oren A, Ganz T, Liu L, Meerloo T (2003) In human epidermis, [beta]-defensin 2 is packaged in lamellar bodies. Exp Mol Pathol 74:180–182

    PubMed  CAS  Google Scholar 

  • Ouellette AJ (2005) Paneth cell alpha-defensins: peptidemediators of innate immunity in the small intestine. Springer Semin Immunopathol 27:133–146

    PubMed  CAS  Google Scholar 

  • Ouellette AJ, Bevins CL (2001) Paneth cell defensins and innate immunity of the small bowel. Inflamm Bowel Dis 7:43–50

    PubMed  CAS  Google Scholar 

  • Panyutich A, Ganz T (1991) Activated alpha 2-macroglobulin is a principal defensinbinding protein. Am J Respir Cell Mol Biol 5:101–106

    PubMed  CAS  Google Scholar 

  • Panyutich AV, Szold O, Poon PH, Tseng Y, Ganz T (1994) Identification of defensin binding to C1 complement. FEBS Lett 356:169–173

    PubMed  CAS  Google Scholar 

  • Panyutich AV, Hiemstra PS, Van Wetering S, Ganz T (1995) Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol 12:351–357

    PubMed  CAS  Google Scholar 

  • Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci U S A 97:8245–8250

    PubMed  CAS  Google Scholar 

  • Patterson BK, Landay A, Andersson J, Brown C, Behbahani H, Jiyamapa D, Burki Z, Stanislawski D, Czerniewski MA, Garcia P (1998) Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am J Pathol 153:481–490

    PubMed  CAS  Google Scholar 

  • Patton DL, Thwin SS, Meier A, Hooton TM, Stapleton AE, Eschenbach DA (2000) Epithelial cell layer thickness and immune cell populations in the normal human vagina at different stages of the menstrual cycle. Am J Obstet Gynecol 183:967–973

    PubMed  CAS  Google Scholar 

  • Pillay K, Coutsoudis A, Gadzi-Naqvi AK, Kuhn L, Coovadia HM, Janoff EN (2001) Secretory leukocyte protease inhibitor in vaginal fluids and perinatal human immunodeficiency virus type 1 transmission. J Infect Dis 183:653–656

    PubMed  CAS  Google Scholar 

  • Pivarcsi A, Nagy I, Koreck A, Kis K, Kenderessy-Szabo A, Szell M, Dobozy A, Kemeny L (2005) Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human beta-defensin-2 in vaginal epithelial cells. Microbes Infect 7:1117–1127

    PubMed  CAS  Google Scholar 

  • Puddu P, Borghi P, Gessani S, Valenti P, Belardelli F, Seganti L (1998) Antiviral effect of bovine lactoferrin saturated with metal ions on early steps of human immunodeficiency virus type 1 infection. Int J Biochem Cell Biol 30:1055–1062

    PubMed  CAS  Google Scholar 

  • Qu XD, Lloyd KC, Walsh JH, Lehrer RI (1996) Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect Immun 64:5161–5165

    PubMed  CAS  Google Scholar 

  • Quayle AJ (2002) The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J Reprod Immunol 57:61–79

    PubMed  CAS  Google Scholar 

  • Quayle AJ, Porter EM, Nussbaum AA, Wang YM, Brabec C, Yip KP, Mok SC (1998) Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol 152:1247–1258

    PubMed  CAS  Google Scholar 

  • Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K, Sieg SF, Weinberg A (2003) Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17: F39–F48

    PubMed  CAS  Google Scholar 

  • Reid G (2001) Probiotic agents to protect the urogenital tract against infection. Am J Clin Nutr 73:437S–443S

    PubMed  CAS  Google Scholar 

  • Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL (2003) Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422:522–526

    PubMed  CAS  Google Scholar 

  • Satoh Y (1988) Effect of live and heat-killed bacteria on the secretory activity of Paneth cells in germ-free mice. Cell Tissue Res 251:87–93

    PubMed  CAS  Google Scholar 

  • Satoh Y, Ishikawa K, Oomori Y, Takeda S, Ono K (1992) Bethanechol and a G-protein activator, NaF/AlCl3, induce secretory response in Paneth cells ofmouse intestine. Cell Tissue Res 269:213–220

    PubMed  CAS  Google Scholar 

  • Schonwetter BS, Stolzenberg ED, Zasloff MA (1995) Epithelial antibiotics induced at sites of inflammation. Science 267:1645–1648

    PubMed  CAS  Google Scholar 

  • Schwebke JR, Burgess D (2004) Trichomoniasis. Clin Microbiol Rev 17:794–803

    PubMed  Google Scholar 

  • Selsted ME, Harwig SS (1987) Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun 55:2281–2286

    PubMed  CAS  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    PubMed  CAS  Google Scholar 

  • Selsted ME, Szklarek D, Lehrer RI (1984) Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect Immun 45:150–154

    PubMed  CAS  Google Scholar 

  • Selsted ME, Tang YQ, Morris WL, McGuire PA, Novotny MJ, Smith W, Henschen AH, Cullor JS (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem 268:6641–6648

    PubMed  CAS  Google Scholar 

  • Shafer WM, Veal WL, Lee EH, Zarantonelli L, Balthazar JT, Rouquette C (2001) Genetic organization and regulation of antimicrobial efflux systems possessed by Neisseria gonorrhoeae and Neisseria meningitidis. J Mol Microbiol Biotechnol 3:219–224

    PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipids bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    PubMed  CAS  Google Scholar 

  • Shi J, Zhang G, Wu H, Ross C, Blecha F, Ganz T (1999) Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect Immun 67:3121–3127

    PubMed  CAS  Google Scholar 

  • Shugars DC, Alexander AL, Fu K, Freel SA (1999) Endogenous salivary inhibitors of human immunodeficiency virus. Arch Oral Biol 44:445–453

    PubMed  CAS  Google Scholar 

  • Singh PK, Jia HP, Wiles K, Hesselberth J, Liu L, Conway BD, Greenberg EP, Valore EV, Welsh MJ, Ganz T, Tack BF, McCray PBJ (1998) Production of β-defensins by human airway epithelia. Proc Natl Acad Sci U S A 95:14961–14966

    PubMed  CAS  Google Scholar 

  • Singh PK, Tack BF, McCray PB Jr, Welsh MJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279:L799–L805

    PubMed  CAS  Google Scholar 

  • Sinha S, Cheshenko N, Lehrer RI, Herold BC (2003) NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2. Antimicrob Agents Chemother 47:494–500

    PubMed  CAS  Google Scholar 

  • Sobel JD (1992) Pathogenesis and treatment of recurrent vulvovaginal candidiasis. Clin Infect Dis 14[Suppl 1]:S148–S153

    PubMed  Google Scholar 

  • Sobel JD (2004) Current trends and challenges in candidiasis. Oncology (Huntingt) 18:7–8

    PubMed  Google Scholar 

  • Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275

    PubMed  CAS  Google Scholar 

  • Sorensen OE, Gram L, Johnsen AH, Andersson E, Bangsboll S, Tjabringa GS, Hiemstra PS, Malm J, Egesten A, Borregaard N (2003) Processing of seminal plasma hCAP-18 to ALL-38 by gastricsin: a novel mechanism of generating antimicrobial peptides in vagina. J Biol Chem 278:28540–28546

    PubMed  CAS  Google Scholar 

  • Sorensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T (2005) Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 174:4870–4879

    PubMed  CAS  Google Scholar 

  • Steinbakk M, Naess-Andresen CF, Lingaas E, Dale I, Brandtzaeg P, Fagerhol MK (1990) Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet 336:763–765

    PubMed  CAS  Google Scholar 

  • Steinman RM, Inaba K (1999) Myeloid dendritic cells. J Leukoc Biol 66:205–208

    PubMed  CAS  Google Scholar 

  • Swart PJ, Kuipers EM, Smit C, Van Der Strate BW, Harmsen MC, Meijer DK (1998) Lactoferrin. Antiviral activity of lactoferrin. Adv Exp Med Biol 443:205–213

    PubMed  CAS  Google Scholar 

  • Taha TE, Hoover DR, Dallabetta GA, Kumwenda NI, Mtimavalye LA, Yang LP, Liomba GN, Broadhead RL, Chiphangwi JD, Miotti PG (1998) Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS 12:1699–1706

    PubMed  CAS  Google Scholar 

  • Taha TE, Gray RH, Kumwenda NI, Hoover DR, Mtimavalye LA, Liomba GN, Chiphangwi JD, Dallabetta GA, Miotti PG (1999) HIV infection and disturbances of vaginal flora during pregnancy. J Acquir Immune Defic Syndr Hum Retrovirol 20:52–59

    PubMed  CAS  Google Scholar 

  • Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME (1999) A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science 286:498–502

    PubMed  CAS  Google Scholar 

  • Tomee JF, Koeter GH, Hiemstra PS, Kauffman HF (1998) Secretory leukoprotease inhibitor: a native antimicrobial protein presenting a new therapeutic option? Thorax 53:114–116

    PubMed  CAS  Google Scholar 

  • Trabi M, Schirra HJ, Craik DJ (2001) Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes. Biochemistry 40:4211–4221

    PubMed  CAS  Google Scholar 

  • Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric thetadefensins from Rhesus macaque leukocytes—Isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084

    PubMed  CAS  Google Scholar 

  • Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI (1998) Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214

    PubMed  CAS  Google Scholar 

  • Turpin JA, Schaeffer CA, Bu M, Graham L, Buckheit RW Jr, Clanton D, Rice WG (1996) Human immunodeficiency virus type-1 (HIV-1) replication is unaffected by human secretory leukocyte protease inhibitor. Antiviral Res 29:269–277

    PubMed  CAS  Google Scholar 

  • UNAIDS/World Health Organization (2004) Global estimates of HIV/AIDS epidemic. www unaids org [accessed June 13, 2005]

    Google Scholar 

  • Valore EV, Ganz T (1992) Posttranslational processing of defensins inimmature human myeloid cells. Blood 79:1538–1544

    PubMed  CAS  Google Scholar 

  • Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB, Ganz T (1998) Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101:1633–1642

    PubMed  CAS  Google Scholar 

  • Valore EV, Park CH, Igreti SL, Ganz T (2002) Antimicrobial components of vaginal fluid. Am J Obstet Gynecol 187:561–568

    PubMed  CAS  Google Scholar 

  • Vaughan VC, Novy FG, McClintock CT (1893) The germicidal properties of nucleins. Med News 62:536–538

    Google Scholar 

  • Wang SA, Papp JR, Stamm WE, Peeling RW, Martin DH, Holmes KK (2005) Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis 191:917–923

    PubMed  Google Scholar 

  • Wang W, Cole AM, Hong T, Waring AJ, Lehrer RI (2003) Retrocyclin, an Antiretroviral θ-defensin, is a lectin. J Immunol 170:4708–4716

    PubMed  CAS  Google Scholar 

  • Wang X, Zhang Z, Louboutin JP, Moser C, Weiner DJ, Wilson JM (2003) Airway epithelia regulate expression of human beta-defensin 2 through Toll-like receptor 2. FASEB J 17:1727–1729

    PubMed  CAS  Google Scholar 

  • Wang YQ, Griffiths WJ, Jornvall H, Agerberth B, Johansson J (2002) Antibacterial peptides in stimulated human granulocytes—characterization of ubiquitinated histone H1A. Eur J Biochem 269:512–518

    PubMed  CAS  Google Scholar 

  • Wasserheit JN (1992) Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex Transm Dis 19:61–77

    PubMed  CAS  Google Scholar 

  • Wecke J, Lahav M, Ginsburg I, Giesbrecht P (1982) Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol 131:116–123

    PubMed  CAS  Google Scholar 

  • Weiss TM, Yang L, Ding L, Wang WC, Waring AJ, Lehrer RI, Huang HW (2002) Two states of a cyclic antimicrobial peptide theta-defensin in lipid bilayers. Biophys J 82:7A

    Google Scholar 

  • Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL (2003) Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis 36:663–668

    PubMed  Google Scholar 

  • Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156

    PubMed  CAS  Google Scholar 

  • Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    PubMed  CAS  Google Scholar 

  • Zariffard MR, Harwani S, Novak RM, Graham PJ, Ji X, Spear GT (2004) Trichomonas vaginalis infection activates cells through toll-like receptor 4. Clin Immunol 111:103–107

    PubMed  CAS  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    PubMed  CAS  Google Scholar 

  • Zhang L, He T, Talal A, Wang G, Frankel SS, Ho DD (1998) In vivo distribution of the human immunodeficiency virus/simian immunodeficiency virus coreceptors: CXCR4, CCR3, and CCR5. J Virol 72:5035–5045

    PubMed  CAS  Google Scholar 

  • Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ, Zhang W, Lopez P, Ho DD (2002) Contribution of human alpha-defensin-1,-2 and-3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298:995–1000

    PubMed  CAS  Google Scholar 

  • Zhao C, Nguyen T, Liu L, Sacco RE, Brogden KA, Lehrer RI (2001) Gallinacin-3, an Inducible Epithelial β-Defensin in the Chicken. Infect Immun 69:2684–2691

    PubMed  CAS  Google Scholar 

  • Zimmermann GR, Legault P, Selsted ME, Pardi A (1995) Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensins is identical to that of the classical defensins. Biochemistry 34:13663–13671

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cole, A.M. (2006). Innate Host Defense of Human Vaginal and CervicalMucosae. In: Shafer, W.M. (eds) Antimicrobial Peptides and Human Disease. Current Topics in Microbiology and Immunology, vol 306. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-29916-5_8

Download citation

Publish with us

Policies and ethics