Skip to main content

Multicomponent Assemblies Including Long DNA and Nanoparticles — An Answer for the Integration Problem?

  • Chapter
Nanotechnology: Science and Computation

Part of the book series: Natural Computing Series ((NCS))

  • 972 Accesses

5 Concluding Remarks

Since we have been working on the integration of long DNA and nanoparticles, we have seen a great potential for these methods in new approaches to electronics. However, we have to point out that there remains a lot of work to be done. All the steps described here are well established as separate procedures. However, the combination of these steps into standard procedures has not yet been established. First of all, the problem of the parallelization of the integration of the molecules, which will be very important for commercial or forward-looking applications, has not been satisfactory solved. This is closely connected to the problem of suitable surfaces and both their modification and their functionalization. We have been working a lot on the development of simple, homogeneous surface modifications, especially on microstructured chips. But even the simple method of a drying droplet is not completely understood today. So one has in a large number of samples only a few with DNA in the desired places, leading to problems of reproducibility and throughput, and a series of established steps will not always work with the same precision and efficiency as does every separate step.

“There is plenty of room at the bottom”, but there is also even more work there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Allemand, D. Bensimon, L. Jullien, A. Bensimon, V. Croquette, pH-dependent specific binding and combing of DNA, Biophys. J., 73,4:2064–2070, 1997.

    Google Scholar 

  2. A.P. Alivisatos, K.P. Johnsson, X. Peng, T.E. Wilson, C.J. Loweth, M.P. Bruchez Jr., P.G. Schultz, Organization of nanocrystal molecules using DNA, Nature, 382,6592:609–611, 1996.

    Article  Google Scholar 

  3. R.P. Andres, T. Bein, M. Dorogi, S. Feng, J.I. Henderson, C.P. Kubiak, W. Mahoney, R.G. Osifchin, R. Reifenberger, Coulomb staircase at room temperature in a self-assembled molecular nanostructure, Science, 272:1323–1325 1996.

    Google Scholar 

  4. D.P. Bancroft, L.A. Christopher L.J. Stephen, Platinum-195 NMR kinetic and mechanistic studies of cis-and trans-diamminedichloroplatinum(II) binding to DNA, J. Am. Chem. Soc, 112,19:6860–6871, 1990.

    Article  Google Scholar 

  5. A. Bardea, E. Katz, A.F. Buckmann, I. Willner, NAD+-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes, J. Am. Chem. Soc, 119,39:9114–9119, 1997.

    Article  Google Scholar 

  6. A. Bardea, E. Katz, I. Willner, Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product, Electroanalysis, 12,14:1097–1106, 2000.

    Article  Google Scholar 

  7. A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, D. Bensimon, Alignment and sensitive detection of DNA by a moving interface, Science, 265:2096–2098, 1994.

    Google Scholar 

  8. D. Bensimon, A.J. Simon, V. Croquette, A. Bensimon, Stretching DNA with a receding meniscus: experiments and models, Physical Review Letters, 7423:4754–4757, 1995.

    Article  Google Scholar 

  9. G.B. Birrell, D.L. Habliston, K.K. Hedberg, O.H. Griffith, Silver-enhanced colloidal gold as a cell surface marker for photoelectron microscopy, J. Histochem. Cytochem., 34,3:339–345, 1986.

    Google Scholar 

  10. M. Bockrath, N. Markovic, A. Shepard, M. Tinkham, L. Gurevich, L.P. Kouwenhoven, M.W. Wu, Mingshaw, L.L. Sohn, Scanned conductance microscopy of carbon nanotubes and λ-DNA, Nano Letters, 2,3:187–190, 2002.

    Article  Google Scholar 

  11. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391:775–778, 1998.

    Article  Google Scholar 

  12. L. Cai, H. Tabata, Hitoshi, T. Kawai, Self-assembled DNA networks and their electrical conductivity, Applied Physics Letters, 77,19:3105–3106, 2000.

    Article  Google Scholar 

  13. W. Cai, H. Aburatani, V.P. Jr. Stanton, D.E. Housman, Y.K. Wang, D.C. Schwartz, Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces, Proc Natl Acad Sci USA, 92,11:5164–5168, 1995.

    Article  Google Scholar 

  14. W. Cai, J. Jing, B. Irvin, L. Ohler, E. Rose, H. Shizuya, U.J. Kim, M. Simon, T. Anantharaman, B. Mishra, D.C. Schwartz, High-resolution restriction maps of bacterial artificial chromosomes constructed by optical mapping, Proc. Natl. Acad. Sci. USA, 95,7:3390–3395, 1998.

    Article  Google Scholar 

  15. D.I. Cherny, A. Fourcade, F. Svinarchuk, P.E. Nielsen, C. Malvy, E. Delain, Analysis of various sequence-specific triplexes by electron and atomic force microscopies, Biophys. J., 74,2:1015–1023, 1998.

    Google Scholar 

  16. J.L. Coffer, S.R. Bigham, X. Li, R.F. Pinizzotto, Y.G. Rho, R.M. Pirtle, I.L. Pirtle, Dictation of the shape of mesoscale semiconductor nanoparticle assemblies by plasmid DNA, Applied Physics Letters, 96,25:3851–3853, 1996.

    Article  Google Scholar 

  17. L.M. Demers, C.A. Mirkin, R.C. Mucic, R.A. Reynolds, R.L. Letsinger, R. Elghanian, G. Viswanadham, A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles, Anal. Chem., 72,22:5535–5341, 2000.

    Article  Google Scholar 

  18. P.J. de Pablo, F. Moreno-Herrero, Colchero, J. Gomez Herrero, P. Herrero, A.M. Bar, P. Ordejn, J.M. Soler, E. Artacho, Absence of dc-conductivity in λ-DNA, Physical review letters, 85,23:4992–4996, 2000.

    Article  Google Scholar 

  19. J. Duguid, V.A. Bloomfield, J. Benevides, G.J. Thomas Jr., Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd, Biophys. J., 65,5:1916–1928, 1993.

    Article  Google Scholar 

  20. C. Dwyer, V. Johri, M. Cheung, J. Patwardhan, A. Lebeck, D. Sorin, Design tools for a DNA-guided self-assembling carbon nanotube technology, Nanotechnology, 15,9:1240–1245(6), 2004.

    Article  Google Scholar 

  21. C. Dwyer, L. Vicci, J. Poulton, D. Erie, R. Superfine, S. Washburn, R.M. Taylor II, The design of DNA self-assembled computing circuitry, IEEE Transaction on Very Large Scale Integration (VLSI) Sytems, 12: 1214–1220, 2004.

    Article  Google Scholar 

  22. Y. Eichen, E. Braun, U. Sivan, G. Ben-Yoseph, Self-assembly of nanoelectronic components and circuits using biological templates, Acta Polym., 49:663–670, 1998.

    Article  Google Scholar 

  23. R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277,5329:1078–1081, 1997.

    Article  Google Scholar 

  24. Y. Fang, T.S. Spisz, T. Wiltshire, N.P. D’Costa, I.N. Bankman, R.H. Reewes, J.H. Hoh, Solid-state DNA sizing by atomic force microscopy, Analytical Chemistry, 70,10:2123–2129, 1998.

    Article  Google Scholar 

  25. H.-W. Fink, Ch. Schneberger, Electrical conduction through DNA molecules, Nature, 398:407–410, 1999.

    Article  Google Scholar 

  26. W.E. Ford, O. Harnack, A. Yasuda, J.M. Wessels, Platinated DNA as precursors to templated chains of metal nanoparticles, Advanced Materials, 13,23:1793–1798, 2001.

    Article  Google Scholar 

  27. L.A. Gearheart, H.J. Ploehn, C.J. Murphy, Oligonucleotide adsorption to gold nanoparticles: a surface-enhanced raman spectroscopy study of intrinsically bent DNA, J. Phys. Chem. B, 105,50:12609–12615, 2001.

    Article  Google Scholar 

  28. M.W. Grinstaff, How do charges travel through DNA? An update on a current debate, Angew. Chem. Int. Ed. Engl., 38,24:3629–3635, 1999.

    Article  Google Scholar 

  29. Q. Gu, C. Cheng, D.T. Haynie, Cobalt metallization of DNA: toward magnetic nanowires, Nanotechnology, 16,8:1358–1363, 2005.

    Article  Google Scholar 

  30. Z. Gueroui, C. Place, E. Freyssingeas, B. Berge, Observation by fluorescence microscopy of transcription on single combed DNA, Proc. Nat. Acad. Sci., USA, 99,9:6005–6010, 2002

    Article  Google Scholar 

  31. Z. Guo, P.J. Sadler, S.C. Tsang, Immobilization and visualization of DNA and proteins on carbon nanotubes, Advanced Materials, 10,9:701–703, 1998.

    Article  Google Scholar 

  32. G.W. Hacker, G. Danscher, A.H. Graf, G. Bernatzky, A. Schiechl, L. Grimelius, The use of silver acetate autometallography in the detection of catalytic tissue metals and colloidal gold particles bound to macromolecules, Prog. Histochem. Cytochem., 23,1–4:286–90, 1991.

    Google Scholar 

  33. M. Hazani, R. Naaman, F. Hennrich, M.M. Kappes, Confocal fluorescence imaging of DNA-functionalized carbon nanotubes, Nano Letters, 3,2:153–155, 2003.

    Article  Google Scholar 

  34. A. Heller, Electrical connection of enzyme redox centers to electrodes, J. Phys. Chem., 96:3579–3587, 1992.

    Article  Google Scholar 

  35. H.H.Q. Heng, J. Squire, L. Tsui, High-resolution mapping of mammalian genes by in situ hybridization to free chromatin, Proc. Natl. Acad. Sci. USA, 89,20:9509–9513, 1992.

    Article  Google Scholar 

  36. R. Holzel, N. Gajovic-Eichelmann, F.F. Bier, Directed immobilization of nucleic acids at ultramicroelectrodes using a novel electro-deposited polymer, Biosens Bioelectron., 19,5:417–422, 2003.

    Article  Google Scholar 

  37. C.S. Holgate, P. Jackson, P.N. Cowen, C.C. Bird, Immunogold-silver staining: new method of immunostaining with enhanced sensitivity, J. Histochem. Cytochem., 31,7:938–944, 1983.

    Google Scholar 

  38. R.E. Holmlin, P.J. Dandliker, J.K. Barton, Charge transfer through the DNA base stack, Angew. Chem. Int. Ed. Engl., 36,24:2714–2730, 1997.

    Article  Google Scholar 

  39. J. Jing, et al., Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules, Proc. Natl. Acad. Sci., USA, 95,14:8046–51, 1998.

    Article  Google Scholar 

  40. K. Keren, R.S. Berman, E. Braun, Patterned DNA metallization by sequence-specific localization of a reducing agent, Nano Letters, 4,2:323–326, 2004.

    Article  Google Scholar 

  41. K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, DNA-templated carbon nanotube field-effect transistor, Science, 302,5649:1380–1382, 2003.

    Article  Google Scholar 

  42. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Sequence-specific molecular lithography on single DNA molecules, Science, 297,5578:72–75, 2002.

    Article  Google Scholar 

  43. D.L. Klein, R. Roth, A.K. Lim, A.P. Alivisatos, P.L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature, 389,6652:699–701, 1997.

    Article  Google Scholar 

  44. D.L. Klein, P.L. McEuen, J.E.B. Katari, R. Roth, A.P. Alivisatos, An approach to electrical studies of single nanocrystals, Applied Physics Letters, 68,18:2574–2576, 1996.

    Article  Google Scholar 

  45. A. Kumar et al., linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates, Advanced Materials, 13,5:341–344, 2001.

    Article  Google Scholar 

  46. J.W. Li et al., A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy, Nucleic Acid Research, 26,20:4785–4786, 1998.

    Article  Google Scholar 

  47. B. Lippert, Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug, VCH, Weinheim, 1999.

    Google Scholar 

  48. J. Liu, M. Gomez-Kaifer, A.E. Kaifer, Switchable molecular devices: from rotaxanes to nanoparticles, Structure and Bonding, 99:141–162, 2001.

    Article  Google Scholar 

  49. Y. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn, Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires, Angew. Chem. Int. Ed. Engl., 42,25:2853–2857, 2003.

    Article  Google Scholar 

  50. C.J. Loweth, W.B. Caldwell, X. Peng, A.P. Alivisatos, P.G. Schultz, DNA-based assembly of gold nanocrystals, Angew. Chem. Int. Ed. Engl., 38,12:1808–1812, 1999.

    Article  Google Scholar 

  51. Y. Maeda, H. Tabata, T. Kawai, Two-dimensional assembly of gold nanoparticles with a DNA network template, Applied Physics Letters, 79,8:1181–1183, 2001.

    Article  Google Scholar 

  52. G. Maubach, A. Csaki, R. Seidel, M. Mertig, W. Pombe, D. Born, W. Fritzsche, Controlled positioning of one individual DNA molecule in an electrode setup based on self-assembly and microstructuring, Nanotechnology, 14:546–550, 2003.

    Article  Google Scholar 

  53. G. Maubach, M. Fritzsche, Precise positioning of individual DNA structures in electrode gaps by self-organization onto guiding microstructures, Nano Letters, 4,4:607–611, 2004.

    Article  Google Scholar 

  54. G. Maubach, D. Born, A. Csaki, W. Fritzsche, Parallel fabrication of DNA-aligned metal nanostructures in microelectrode gaps by a self-organization process, Small, 6:619–624, 2005.

    Article  Google Scholar 

  55. J. Mbindyo, B.D. Reiss, B.R. Martin, C.D. Keating, M.J. Natan, T. E. Mallouk, DNA-directed assembly of gold nanowires on complementary surfaces, Advanced Materials, 13,4:249–254, 2001.

    Article  Google Scholar 

  56. E. Meggers, M.E. Michel-Beyerle, B. Giese, Sequence dependent long range hole transport in DNA, J. Am. Chem. Soc., 120,49:12950–12955, 1998.

    Article  Google Scholar 

  57. M. Mertig, L.C. Ciacchi, R. Seidel, W. Pompe, A. deVita, DNA as a selective metallization template, Nano Letters, 2,8:841–844, 2002.

    Article  Google Scholar 

  58. M. Mertig, R. Seidel, L.C. Ciacchi, W. Pombe, Nucleation and growth of metal clusters on a DNA template, CP633, Structural and Electronic Properties of Molecular Nanostructures, edited by H. Kuzmany et al., 2002 American Institute of Physics 2002.

    Google Scholar 

  59. M. Mertig, R. Kirsch, W. Pompe, Biomolecular approach to nanotube fabrication, Applied Physics A, 66:723–727, 1998.

    Article  Google Scholar 

  60. X. Michalet et al., Dynamic molecular combing: stretching the whole human genome for high-resolution studies, Science, 277,5331:1518–23, 1997.

    Article  Google Scholar 

  61. C.A. Mirkin, T.A. Taton, Semiconductors meet biology, Nature, 405,6787:626–627, 2000.

    Article  Google Scholar 

  62. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382,6592:607–609, 1996.

    Article  Google Scholar 

  63. C.F. Monson, A.T. Wooley, DNA-templated construction of copper nanowires, Nano Letters, 3,3:359–363, 2003.

    Article  Google Scholar 

  64. C.M. Niemeyer, Progress in “engineering up” nanotechnology devices utilizing DNA as a construction material, Applied Physics Letters, 68:119–124, 1999.

    Google Scholar 

  65. C.M. Niemeyer, Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology, Curr. Opin. Chem. Biol., 4,6:609–618, 2000.

    Article  Google Scholar 

  66. Y. Okahata, T. Kobayashi, K. Tanaka, M. Shimomura, Anisotropic electric conductivity in an aligned DNA cast film, Journal of the American Chemical Society, 120:6165–6166, 1998.

    Article  Google Scholar 

  67. G.B. Onoa, G. Cervantes, V. Moreno, M.J. Prieto, Study of the interaction of DNA with cisplatin and other Pd(II) and Pt(II) complexes by atomic force microscopy, Nucleic Acids Res., 26,6:1473–80, 1998.

    Article  Google Scholar 

  68. A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, G.L. Snider, Realization of a functional cell for quantum-dot cellular automata, Science, 277:928–930, 1997.

    Article  Google Scholar 

  69. K. Otobe, T. Ohtani, Behavior of DNA fibers stretched by precise meniscus motion control, Nucleic Acids Res., 29,22:E109, 2001.

    Article  Google Scholar 

  70. R,E. Palmer, Q. Guo, Imaging thin films of organic molecules with the scanning tunnelling microscope, Physical Chemistry Chemical Physics, 4,18:4275–4284, 2002.

    Article  Google Scholar 

  71. V. Pardo-Yissar, E. Katz, I. Willner, A.B. Kotlyar, C. Sanders, H. Lill, Biomaterial engineered electrodes for bioelectronics, Faraday Discuss, 116,116:119–34; discussion 171–90, 2000.

    Article  Google Scholar 

  72. I. Parra, B. Windle, High resolution visual mapping of stretched DNA by fluorescent hybridization, Nat. Genet., 5,1:17–21, 1993.

    Article  Google Scholar 

  73. F. Patolsky, E. Katz, I. Willner, Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator, Angew. Chem. Int. Ed. Engl., 41,18:3398–402, 2002.

    Article  Google Scholar 

  74. F. Patolsky, A. Lichtenstein, I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction, Nat. Biotechnol., 19,3:253–7, 2001.

    Article  Google Scholar 

  75. T.T. Perkins, S.R. Quake, D.E. Smith, S. Chu, Relaxation of a single DNA molecule observed by optical microscopy, Science, 264,5160:822–826, 1994.

    Google Scholar 

  76. T.T. Perkins, D.E. Smith, S. Chu, Direct observation of tube-like motion of a single polymer chain, Science, 264,5160:819–822, 1994.

    Google Scholar 

  77. A. Prokop, Bioartificial organs in the twenty-first century: nanobiological devices, Annals of the New York Acad. Sci., 944:472–90, 2001.

    Article  Google Scholar 

  78. J. Richter, Metallization of DNA, Physica E, 16,2:157–173, 2003.

    Article  Google Scholar 

  79. J. Richter, M. Mertig, W. Pompe, I. Monch, H.K. Schackert, Construction of highly conductive nanowires on a DNA template, Applied Physics Letters, 78,4:536–539, 2001.

    Article  Google Scholar 

  80. J. Richter et al., Nanoscale palladium metallization of DNA, Advanced Materials, 12,7:507–510, 2000.

    Article  Google Scholar 

  81. G. Schmid, J.S. Bradley, Clusters and Colloids, Wiley, 1994.

    Google Scholar 

  82. N.C. Seeman, DNA nanotechnology: novel DNA constructions, Annu. Rev. Biophys. Biomol. Struct., 27:225–48, 1998.

    Article  Google Scholar 

  83. N.C. Seeman, DNA engineering and its application to nanotechnology, Trends Biotechnol, 17,11:437–43, 1999.

    Article  Google Scholar 

  84. N.C. Seeman, DNA nanotechnology, Materials Today, 6 Pages 7:24–30, 2003.

    Article  Google Scholar 

  85. W.L. Shaiu, D.D. Larson, J. Vesenka, E. Henderson, Atomic force microscopy of oriented linear DNA molecules labeled with 5nm gold spheres, Nucleic Acids Res., 21,1:99–103, 1993.

    Google Scholar 

  86. S.B. Smith, L. Finzi, C. Bustamante, Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads, Science, 258,5085:1122–1226, 1992.

    Google Scholar 

  87. R.-I. Stefan, J.F. van Staden, H.Y. Aboul-Enein, Immunosensors in clinical analysis, Fresenius’ Journal of Analytical Chemistry, 366, 6–7, 2000.

    Google Scholar 

  88. A.J. Storm, J. van Noort, S. de Vries, C. Dekker, Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale, Applied Physics Letters, 79,23:3881–3883, 2001.

    Article  Google Scholar 

  89. K. Tanaka, Y. Okahata, A DNA-lipid complex in organic media and formation of an aligned cast film, J. Am. Chem. Soc., 118,44:10679–10683, 1996.

    Article  Google Scholar 

  90. T. Torimoto, M. Yamashita, S. Kuwabata, T. Sakata, H. Mori, H. Yoneyama, Hiroshi, Fabrication of CdS nanoparticle chains along DNA double strands, J. Phys. Chem. B, 103,42:8799–8803, 1999.

    Article  Google Scholar 

  91. P. Tran, B. Alavi, G. Gruner, Charge transport along the λ-DNA double helix, Physical Review Letters, 85,7:15641567, 2000.

    Article  Google Scholar 

  92. T. Vallant et al., Formation of self-assembled octadecylsiloxane monolayers on mica and silicon surfaces studied by atomic force microscopy and infrared spectroscopy, Physical Chemistry B, 102:7190–7197, 1998.

    Article  Google Scholar 

  93. G. Wang, R.W. Murray, Controlled assembly of monolayer-protected gold clusters by dissolved DNA, Nano Letters, 4,1:95–101, 2004.

    Article  Google Scholar 

  94. J. Wang, Towards genoelectronics: electrochemical biosensing of DNA hybridization, Chemistry-A European Journal, 5,6:1681–1685, 1999.

    Article  Google Scholar 

  95. M.G. Warner, J.E. Hutchison, Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds, Nature Materials, 2,4:272–7, 2003.

    Article  Google Scholar 

  96. A. Warsinke, A. Benkert, F.W. Scheller, Electrochemical immunoassays, Fresenius’ Journal of Analytical Chemistry, 366,6–7:622–634, 2000.

    Google Scholar 

  97. M. Washizu, O. Kurosawa, Electrostatic manipulation of DNA in microfabricated structures, IEEE Transactions on Industrial Applications, 26,6:1165–1172, 1990.

    Article  Google Scholar 

  98. H.U. Weier et al., Quantitative DNA fiber mapping, Human Molecular Genetics, 4,10:1903–1910, 1995.

    Google Scholar 

  99. Y. Weizmann, F. Patolsky, I. Willner, Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Aunanoparticles, Analyst, 126,9:1502–1504, 2001.

    Article  Google Scholar 

  100. Y. Weizmann, F. Patolsky, I. Popov, I. Willner, Telomerase-generated templates for the growing of metal nanowires, Nano Letters, 4,5:787–792, 2004.

    Article  Google Scholar 

  101. I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A.F. Buckmann, A. Heller, Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, J. Am. Chem. Soc., 118,42:10321–10322, 1996.

    Article  Google Scholar 

  102. I. Willner, E. Katz, B. Willner, in Biosensors and Their Applications, V.C. Yang, T.T. Ngo, (eds.), Kluwer Academic Publishers, New York, 47–98, 2000.

    Google Scholar 

  103. I. Willner, A. Riklin, B. Shoham, D. Rivenzon, E. Katz, Development of novel biosensor enzyme electrodes: Glucose oxidase multilayer arrays immobilized onto self-assembled monolayers on electrodes, Advanced Materials, 5,12:912–915, 1993.

    Article  Google Scholar 

  104. I. Willner, B. Willner, E. Katz, Functional biosensor systems via surfacenanoengineering of electronic elements, Reviews in Molecular Biotechnology, 82,4:325–355, 2002.

    Article  Google Scholar 

  105. H. Xin, A.T. Woolley, DNA-templated nanotube localization, J Am Chem Soc, 125,29:8710–8711, 2003.

    Article  Google Scholar 

  106. H. Yan, S. Park, G. Finkelstein, J.H. Reif, T. LaBean, DNA-templated self-assembly of protein arrays and highly conductive nanowires, Science, 301:1882–1884, 2003.

    Article  Google Scholar 

  107. H. Yokota et al., A new method for straightening DNA molecules for optical restriction mapping, Nucleic Acids Research, 25,5:1064–1070, 1997.

    Article  Google Scholar 

  108. H. Yokota, J. Sunwoo, M. Sarikaya, G. van den Engh, R. Aebersold, Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy, Anal. Chem., 71,19:4418–22, 1999.

    Article  Google Scholar 

  109. D. Zanchet, C.M. Micheel, W.J. Parak, D. Gerion, A.P. Alivisatos, Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates, Nano Letters, 1,1:32–35, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolff, A., Csaki, A., Fritzsche, W. (2006). Multicomponent Assemblies Including Long DNA and Nanoparticles — An Answer for the Integration Problem?. In: Chen, J., Jonoska, N., Rozenberg, G. (eds) Nanotechnology: Science and Computation. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30296-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-30296-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30295-7

  • Online ISBN: 978-3-540-30296-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics