Skip to main content

Is the Free Energy of Hydrogel the Sum of Elastic Energy and Ionic Energy?

  • Chapter
Mechanics of Biological Tissue

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Donnan, F. G. (1924). The theory of membrane equilibria. Chem. Review 1:73–90.

    Article  Google Scholar 

  • Flory, P. J., and Rehner Jr., J. (1943). Statistical mechanics of cross-linked polymer networks. J. Chem. Phys. 11:512–526.

    Article  Google Scholar 

  • Frijns, A. J. H., Huyghe, J. M., Kaasschieter, E. F., and Wijlaars, M. W. (2003). Numerical simulation of deformations and electrical potentials in a cartilage substitute. Biorheology 40:123–131.

    Google Scholar 

  • Houbon, G. B. (1996). Swelling and compression of intervertebral disc tissue. Ph.D. Dissertation, Eindhoven University of Technology.

    Google Scholar 

  • Huyghe, J. M., and Janssen, J. D. (1997). Quadriphasic mechanics of swelling incompressible porous media. Int. J. Eng. Sci. 35:793–802.

    Article  Google Scholar 

  • Jin, M., and Grodzinsky, A. J. (2001). Effect of electrostatic interactions between glycosaminoglycans on the shear stiffness of cartilage: A molecular model and experiments. Macromolecules 34:8330–8339.

    Article  Google Scholar 

  • Okay, O., and Sariisik, S. B. (1999). Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments. Eur. Polym. J. 36:393–399.

    Article  Google Scholar 

  • Oomens, C. W. J., de Heus, H. J., Huyghe, J. M., Nelissen, L., and Janssen, J. D. (1995). Validation of triphasic mixture theory for a mimic of intervertebral disk tissue. Biomimetics 3:171–185.

    Google Scholar 

  • Robinson, R. A., and Stokes, R. H. (1968). Electrolyte Solutions. London: Butterworths.

    Google Scholar 

  • Vilgis, T. A., and Wilder, J. (1998). Polyelectrolyte networks: elasticity, swelling, and the violation of the Flory-Rehner hypothesis. Comput. Theor. Polym. S. 8:61–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roos, R.W., Huyghe, J.M., Baaijens, F.P.T. (2006). Is the Free Energy of Hydrogel the Sum of Elastic Energy and Ionic Energy?. In: Holzapfel, G.A., Ogden, R.W. (eds) Mechanics of Biological Tissue. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31184-X_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-31184-X_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25194-1

  • Online ISBN: 978-3-540-31184-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics