Skip to main content

Inverse Fractal Problem

  • Chapter
Differential Evolution

Part of the book series: Natural Computing Series ((NCS))

Abstract

This contribution focuses on the so-called inverse fractal problem and its solution by means of a new evolutionary algorithm — the differential evolution algorithm. The principles behind the inverse fractal problem are briefly explained here. The contribution then discusses the use of differential evolution for the solution of the inverse fractal problem and selected results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arneodo A, Bacry E, Muzy J (1994) Solving the Inverse Fractal Problem from Wavelet Analysis. Europhysics Letters 25(7):479–484

    Google Scholar 

  • Arneodo A, Bacry E, Muzy J (1995) The Thermodynamics of Fractals Revisited with Wavelets. Physica A 213(1–2):232–275

    Article  Google Scholar 

  • Arul A, Kanmani S (1995) A Conjugate Transform Solution to the Inverse Fractal Problem. Europhysics Letters 32(1):1–5

    Google Scholar 

  • Barnsley MF (1993) Fractals everywhere. Academic Press, New York

    Google Scholar 

  • Bunde A, Shlomo H (1996) Fractals and disordered systems. Springer, Berlin

    Google Scholar 

  • Deliu A, Geronimo J, Shonkwiler R (1997) On the inverse fractal problem for two-dimensional attractors. Philosophical Transactions of The Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 355(1726):1017–1062

    Article  MathSciNet  Google Scholar 

  • Gutierrez J, Cofino A, Ivanissevich M (2000) An hybrid evolutive-genetic strategy for the inverse fractal problem of IFS models. In: Advances in Artificial Intelligence. Lecture notes in artificial intelligence, vol 1952. Springer, Berlin, pp 467–476

    Google Scholar 

  • Hastings HM, Sugihara G (1993) Fractals: a user’s guide for the natural sciences. Oxford University Press

    Google Scholar 

  • Hlaváč V, Šonka M (1992) Počítačové vidění (Computer Vision, Czech edn). Grada, Prague

    Google Scholar 

  • Lampinen J (1999) A bibliography of differential evolution algorithms. Technical report, Lappeenranta University of Technology, Department of Information Technology, Laboratory of Information Processing, October 16. Available at: http://www.lut.fi/~jlampine/debiblio.htm

    Google Scholar 

  • Lampinen J, Zelinka I (1999) Mechanical engineering design optimization by differential evolution. In: New ideas in optimization. McGraw-Hill, London

    Google Scholar 

  • Muzy J, Bacry E, Arneodo A (1994) The multifractal formalism revisited with wavelets. International Journal of Bifurcation and Chaos 4(2):245–302

    Article  MathSciNet  Google Scholar 

  • Peitgen HO, Jürgens H, Saupe D (1992) Chaos and fractals: new frontiers of science. Springer, Berlin

    Google Scholar 

  • Storn R (2002) Homepage of DE. Available at: http://www.icsi.berkeley.edu/~storn/code.html

    Google Scholar 

  • Struzik Z (1995) The wavelet transform in the solution to the inverse fractal problem. Fractals — An Interdisciplinary Journal on the Complex Geometry of Nature 3(2):329–350

    MATH  Google Scholar 

  • Struzik Z (1996) Solving the two-dimensional inverse fractal problem with the wavelet transform. Fractals — An Interdisciplinary Journal on the Complex Geometry of Nature 4(4):469–475

    MATH  MathSciNet  Google Scholar 

  • Zelinka I (1999a) Aplikovaná informatika, vol 1. Ediční středisko, Fakulty technologické, VUT, Zlín

    Google Scholar 

  • Zelinka I (1999b) Inverse fractal problem by means of evolutionary algorithms. In: Mendel’99, 5th international conference on soft computing, PC-DIR, Brno, pp 430–435

    Google Scholar 

  • Zelinka I (1999c) Fraktální vidění pomocí neuronových sítí. In: Process control’ 99, vol 1. Slovak University of Technology, Vydavatelstvo STU Bratislava, pp 318–322

    Google Scholar 

  • Zelinka I (2001) Prediction and analysis of behavior of dynamical systems by means of artificial intelligence and synergetics, Ph.D. thesis, Tomas Bata University, ZlÍn, Czech Republic

    Google Scholar 

  • Zelinka I (2002a) Umělá inteligence v problémech globální optimalizace (Artificial intelligence in problems of global optimization, Czech ed). BEN, Prague. ISBN 80-7300-069-5

    Google Scholar 

  • Zelinka I (2002b) Information on DE algorithm. Available at: http://www.ft.utb.cz/people/zelinka/soma

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zelinka, I. (2005). Inverse Fractal Problem. In: Differential Evolution. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31306-0_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-31306-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20950-8

  • Online ISBN: 978-3-540-31306-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics