Skip to main content

CMOL: Devices, Circuits, and Architectures

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

This chapter is a brief review of the recent work on various aspects of the prospective hybrid semiconductor/nanowire/molecular (“CMOL”) integrated circuits. The basic idea of such circuits is to combine the advantages of the currently dominating CMOS technology (including its flexibility and high fabrication yield) with those of molecular devices with nanometer-scale footprint. Two-terminal molecular devices would be self-assembled on a pre-fabricated nanowire crossbar fabric, enabling very high function density at acceptable fabrication costs. Preliminary estimates show that the density of active devices in CMOL circuits may be as high as 1012 cm-2 and that they may provide an unparalleled information processing performance, up to 1020 operations per cm2 per second, at manageable power consumption. However, CMOL technology imposes substantial requirements (most importantly, that of high defect tolerance) on circuit architectures. In the view of these restrictions, the most straightforward application of CMOL circuits is terabitscale memories, in which powerful bad-bit-exclusion and error-correction techniques may be used to boost the defect tolerance. The implementation of Boolean logic circuits is more problematic, though our preliminary results for reconfigurable, uniform FPGA-like CMOL circuits look very encouraging. Finally, CMOL technology seems to be uniquely suitable for the implementation of the “CrossNet” family of neuromorphic networks for advanced information processing including, at least, pattern recognition and classification, and quite possibly much more intelligent tasks. We believe that these application prospects justify a large-scale research and development effort focused on the main challenge of the field, the high-yield self-assembly of molecular devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Heath and M.A. Ratner: Molecular electronics, Physics Today 56, 43 (2003)

    Article  ADS  Google Scholar 

  2. J. R. Reimers, C. A. Picconnatto, J. C. Ellenbogen, and R. Shashidhar (eds.): Molecular Electronics III, Ann. New York Acad. Sci. 1006 (2003)

    Google Scholar 

  3. J. Tour: Molecular Electronics (World Scientific, Singapore 2003)

    Google Scholar 

  4. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen: Nanoniechanical oscillations in a single-C-60 transistor, Nature 407, 57 (2000)

    Article  ADS  Google Scholar 

  5. S. P. Gubin, Y. V. Gulyaev, G. B. Khomutov, V. V. Kislov, V. V. Kolesov, E. S. Soldatov, K. S. Sulaimankulov, and A. S. Trifonov: Molecular clusters as building blocks for nanoelectronics: The first demonstration of a cluster single- electron tunnelling transistor at room temperature, Nanotechnology 31, 185 (2002)

    Article  ADS  Google Scholar 

  6. N. B. Zhitenev, H. Meng, and Z. Bao: Conductance of small molecular junctions, Phys. Rev. Lett. 88, 226801 (2002)

    Article  ADS  Google Scholar 

  7. J. Park, A. N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D. C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  8. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm: Single-electron transistor of a single organic molecule with access to several redox states, Nature 425, 698 (2003)

    Article  ADS  Google Scholar 

  9. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong: Device scaling limits of Si MOSFETs and their application dependencies, Proc. IEEE 89, 259 (2001)

    Article  Google Scholar 

  10. K. K. Likharev: Electronics below 10 nm, in Nano and Giga Challenges in Microelectronics (Elsevier, Amsterdam 2003), pp. 27–68

    Chapter  Google Scholar 

  11. International Technology Roadmap for Semiconductors. 2003 Edition, 2004 Update, available online at http://public.itrs.net/

    Google Scholar 

  12. K. K. Likharev: Single-electron devices and their applications, Proc. IEEE 87, 606 (1999)

    Article  Google Scholar 

  13. P. J. Kuekes, D. R. Stewart, and R. S. Williams: The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits, J. Appl. Phys. 97, 034301 (2005)

    Article  ADS  Google Scholar 

  14. W. D. Brown and J. E. Brewer (eds.): Nonvolatile Semiconductor Memory Technology (IEEE Press, Piscataway, NJ 1998)

    Google Scholar 

  15. Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams: Nanoscale molecular-switch crossbar circuits, Nanotechnology 14, 462 (2003)

    Article  ADS  Google Scholar 

  16. Z. H. Zhong, D. L. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber: Nanowire crossbar arrays as address decoders for integrated nanosystems, Science 302, 1377 (2003)

    Article  ADS  Google Scholar 

  17. C. Li, W. D. Fan, B. Lei, D. H. Zhang, S. Han, T. Tang, X. L. Liu, Z. Q. Liu, S. Asano, M. Meyyappan, J. Han, and C. W. Zhou: Multilevel memory based on molecular devices, Appl. Phys. Lett. 84, 1949 (2004)

    Article  ADS  Google Scholar 

  18. M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler: Molecular electronics: From devices and interconnect to circuits and architecture, Proc. IEEE 91, 1940 (2003)

    Article  Google Scholar 

  19. S. Das, G. Rose, M. M. Ziegler, C. A. Picconatto, and J. C. Ellenbogen: Architectures and simulations for nanoprocessor systems integrated on the molecular scale, Chap. 17 of this collection (2005)

    Google Scholar 

  20. W. Wang, T. Lee, and M. Reed: Intrinsic electronic conduction mechanisms in self-assembled monolayers, Chap. 10 of this collection (2005)

    Google Scholar 

  21. D. Porath: DNA-based devices, Chap. 15 of this collection (2005)

    Google Scholar 

  22. L. Ji, P. D. Dresselhaus, S. Y. Han, K. Lin, W. Zheng, and J. E. Lukens: Fabrication and characterization of single-electron transistors and traps, J. Vac. Sci. Technol. B 12, 3619 (1994)

    Article  Google Scholar 

  23. C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, and J. R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391 (1999)

    Article  Google Scholar 

  24. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath: A [2]catenane-based solid state electronically reconfigurable switch, Science 289, 1172 (2000)

    Article  ADS  Google Scholar 

  25. S. Föling, Ö. Türel, and K. K. Likharev: Single-electron latching switches as nanoscale synapses, in Proceedings of the 2001 International Joint Conference on Neural Networks (Int. Neural Network Soc., Mount Royal, NY 2001), pp. 216–221

    Google Scholar 

  26. S. Zankovych, T. Hoffmann, J. Seekamp, J. U. Bruch, and C. M. S. Torres: Nanoimprint lithography: Challenges and prospects, Nanotechnology 12, 91 (2001)

    Article  ADS  Google Scholar 

  27. S.R.J. Brueck: There are no fundamental limits to optical lithography, in International Trends in Applied Optics (SPIE Press, Bellingham, WA 2002), pp. 85–109

    Google Scholar 

  28. P. J. Kuekes and R. S. Williams: Demultiplexer for a molecular wire crossbar network (MWCN DEMUX), US Patent No. 6,256,767 (July 3, 2001)

    Google Scholar 

  29. A. DeHon, P. Lincoln, and J. E. Savage: Stochastic assembly of sublithographic nanoscale interfaces, IEEE Trans. on Nanotechnology 2, 165 (2003)

    Article  ADS  Google Scholar 

  30. M. M. Ziegler and M. R. Stan: CMOS/nano co-design for crossbar-based molecular electronic systems, IEEE Trans. on Nanotechnology 2, 217 (2003)

    Article  ADS  Google Scholar 

  31. Ö. Türel and K. K. Likharev: CrossNets: Possible neuromorphic networks based on nanoscale components, Int. J. of Circuit Theory and Appl. 31, 37 (2003)

    Article  MATH  Google Scholar 

  32. K.K. Likharev, A. Mayr, I. Muckra, and O. Türel: CrossNets: High-performance neuromorphic architectures for CMOL circuits, Ann. New York Acad. Sci. 1006, 146 (2003)

    Article  ADS  Google Scholar 

  33. K. L. Jensen: Field emitter arrays for plasma and microwave source applications, Physics of Plasmas 6, 2241 (1999)

    Article  ADS  Google Scholar 

  34. J. H. Fendler: Chemical self-assembly for electronic applications, Chemistry of Materials 13, 3196 (2001)

    Article  Google Scholar 

  35. K.K. Likharev: Riding the crest of a new wave in memory [NOVORAM], IEEE Circuits and Devices 16, 16 (July 2000)

    Article  Google Scholar 

  36. D. B. Strukov and K. K. Likharev: Prospects for terabit-scale nanoelectronic memories, Nanotechnology 16, 137 (2005)

    Article  ADS  Google Scholar 

  37. J. von Neumann: Probabilistic logics and the synthesis of reliable organisms from unreliable components, in Automata Studies (Princeton University Press, Princeton, NJ 1956), pp. 329–78

    Google Scholar 

  38. S. Roy and V. Beiu: Multiplexing schemes for cost-effective fault-tolerance, Report at IEEE-NANO'04 (Munich, Germany, Aug. 2004); accepted for publication in IEEE Trans, on Nanotechnology (2005)

    Google Scholar 

  39. J. Rose, R. J. Francis, D. Lewis, and P. Chow: Architecture of field-programmable gate arrays - the effect of logic block functionality on area efficiency, IEEE J. of Solid-State Circuits 25, 1217 (1990)

    Article  Google Scholar 

  40. J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams: A defect-tolerant computer architecture: Opportunities for nanotechnology, Science 280, 1716 (1998)

    Article  Google Scholar 

  41. E. Ahmed and J. Rose: The effect of LUT and cluster size on deep-submicron FPGA performance and density, IEEE Trans. on VLSI Syst. 12, 288 (2004)

    Article  Google Scholar 

  42. J. Kouloheris and A. E. Gamal: PLA-based FPGA versus cell granularity, in Proceedings of the Custom Integrated Circuits Conference (IEEE Press, Piscataway, NJ 1992), pp. 4.3.1–4

    Chapter  Google Scholar 

  43. A. DeHon: Law of large numbers system design, in Nano, Quantum and Molecular Computing (Kluwer Academic Publishers, Boston, MA 2004)

    Google Scholar 

  44. A. DeHon and M. J. Wilson: Nanowire-based sublithographic programmable logic arrays, in: Proc. of FPGA'04 (Monterey, CA 2004), pp. 123–132.

    Google Scholar 

  45. V. A. Sverdlov, T. J. Walls, and K. K. Likharev: Nanoscale silicon MOSFETs: A theoretical study, IEEE Trans. on Electron Devices 50, 1926 (2003)

    Article  ADS  Google Scholar 

  46. D. B. Strukov and K. K. Likharev: A reconfigurable architecture for hybrid CMOS/nanodevice circuits, submitted for presentation at FCCM'05 (Napa Valley, CA, April 2005); preprint available online at http://rsfql.physics.sunysb.edu/ likharev/nano/FCCM2005.pdf.

    Google Scholar 

  47. D. B. Strukov and K. K. Likharev: CMOL FPGA: A cell-based, reconfigurable architecture for hybrid digital circuits using two-terminal nanodevices, submitted to Nanotechnology; preprint available online at http://rsfql.physics.sunysb.edu/ likharev/nano/FPGA05.pdf.

    Google Scholar 

  48. J. Rabaey, A. Chandrakasan, and B. Nikolic: Digital Integrated Circuits, A Design Perspective (Pearson Edication, Singapore 2003)

    Google Scholar 

  49. P. M. Kogge, and H. S. Stone: Parallel algorithm for efficient solution of a general class of recurrence equations, IEEE Trans. on Computers 22, 783 (1973)

    Article  MathSciNet  Google Scholar 

  50. J. Hertz, A. Krogh, and R. G. Palmer: Introduction to the Theory of Neural Computation (Perseus, Cambridge, MA 1991)

    MATH  Google Scholar 

  51. Ö. Türel, J. H. Lee, X. Ma, and K. K. Likharev: Neuromorphic architectures for nanoetectronic circuits, Int. J. of Circuit Theory and Appl. 32, 277 (2004)

    Article  Google Scholar 

  52. J. H. Lee and K. K. Likharev: CMOL CrossNets as pattern classifiers, submitted for presentation at the 8th Int. Work-Conference on Artificial Neural Networks (Barcelona, Spain, June 2005); preprint available at http://rsfql.physics.sunysb.edu/ likharev/nano/IWANN05.pdf

    Google Scholar 

  53. R. S. Sutton and A. G. Barto: Reinforcement Learning (MIT Press, Cambridge, MA 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Likharev, K.K., Strukov, D.B. (2006). CMOL: Devices, Circuits, and Architectures. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_17

Download citation

Publish with us

Policies and ethics