Skip to main content

Foundations of Molecular Electronics – Charge Transport in Molecular Conduction Junctions

  • Chapter
Introducing Molecular Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 680))

Abstract

The most fundamental structure involved in molecular electronics is a molecular transport junction, consisting of one (ideally) or more molecules extending between two electrodes. These junctions combine the fundamental process of intramolecular electron transfer with the mixing of molecular and continuum levels at the electrodes and the nonequilibrium process of voltage-driven currents. Much of this book is devoted to the complicated but significant behaviors that arise from this conjunction. This introductory chapter attempts to sketch some of the principles and also some of the unresolved issues that characterize molecular transport junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Joachim, J.K. Gimzewski, and A. Aviram: Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541 (2000).

    Article  ADS  Google Scholar 

  2. A. Nitzan and M. Ratner: Electron transport in molecular wire junctions, Science 300, 1384 (2003).

    Article  ADS  Google Scholar 

  3. A. Nitzan: Electron transmission through molecules and molecular interfaces, Ann. Rev. Phys. Chem. 52, 681 (2001).

    Article  ADS  Google Scholar 

  4. P. Hanggi, M. Ratner, S. Yaliraki eds., Chemical Physics 281, 111 (2002).

    Google Scholar 

  5. J.R. Heath and M.A. Ratner: Molecular electronics, Physics Today 56, 43 (2003); C.R. Kagan and M.A. Ratner, eds., MRS Bulletin, 29, #6 (2004)

    Article  ADS  Google Scholar 

  6. D.M. Adams, L. Brus, C.E.D. Chidsey, et al.: Charge transfer on the nanoscale: Current status, J. Phys. Chem. B 107, 6668 (2003).

    Article  Google Scholar 

  7. M.C. Petty, M.R. Bryce, and D. Bloor, Introduction to Molecular Electronics (Oxford University Press, Oxford, 1995); C.A. Mirkin, and M.A. Ratner: Molecular electronics, Annu. Rev. Phys. Chem., 43, 719 (1992); A. Aviram, ed., Molecular Electronics - Science and Technology (American Institute of Physics, College Park, MD, 1992); A. Aviram, M.A. Ratner, and V. Mujica: Molecular electronics - science and technology, eds., Ann. N.Y. Acad. Sci., 852, (1998); J. Jortner, and M.A. Ratner, eds. Molecular Electronics (Blackwell Science, Cambridge, MA, 1997); M.A. Ratner, and M.A. Reed, Encyclopedia of Science and Technology, 3rd ed., (Academic Press, New York, 2002); V. Mujica, and M.A. Ratner, in Handbook of Nanoscience, Engineering and Technology, W.A. Goddard III, D.W. Brenner, S.E. Lyshevshi, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002); M.A. Reed, and T. Lee, eds., Molecular Nanoelectronics (American Scientific Publishers, Stevenson Ranch, CA, 2003).

    Google Scholar 

  8. Jeffrey R. Reimers, et al.: Molecular Electronics III, eds., Ann. N.Y. Acad. Sci., 1006, (2003).

    Google Scholar 

  9. Thomas Tsakalakos, Ilya A. Ovid'ko and Asuri K. Vasudevan, eds., Nanostruc-tures: Synthesis, Functional Properties and Applications, (Kluwer, Dordrecht, 2003).

    Google Scholar 

  10. A. Aviram, M. Ratner, and V. Mujica, eds., Molecular electronics II, Ann. N.Y. Acad. Sci., 960, (2002).

    Google Scholar 

  11. J. Jortner, and M. Bixon, in Advances in Chemical Physics, I. Prigogine, and S. Rice, eds. 106 (Wiley, New York, 1999); A.M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology (Gordon & Breach, New York, 1995); A.M. Kuznetsov, J. Ulstrup, A.M.K., et al., Electron Transfer in Chemistry and Biology: An Introduction to the Theory (Wiley, New York, 1998).

    Google Scholar 

  12. R.A. Marcus: Chemical and electrochemical electron-transfer theory, Ann. Rev. Phys. Chem. 15, 155 (1964).

    Article  ADS  Google Scholar 

  13. J.R. Miller, J.V. Beitz, and R. Huddleston: Effect of free energy on rates of electron transfer between molecules, J. Am. Chem. Soc. 106, 5057 (1984).

    Article  Google Scholar 

  14. J. Jortner and B. Pullman, eds., Perspectives in Photosynthesis. Dordrecht: Kluwer, 1990.

    Google Scholar 

  15. J. Jortner, M. Bixon, T. Langenbacher, and M.E. Michel-Beyerle: Charge transfer and transport in DNA, Proceed. Natl. Acad. Sci. USA 95, 12759 (1998).

    Article  ADS  Google Scholar 

  16. M. Bixon and J. Jortner, [1], p. 35.

    Google Scholar 

  17. J. Ulstrup and J. Jortner: The effect of intramolecular quantum modes on free energy relationships for electron transfer reaction, J. Chem. Phys. 63, 4358 (1975).

    Article  ADS  Google Scholar 

  18. M. Bixon and J. Jortner: Solvent relaxation dynamics and electron transfer, Chem. Phys. 176, 467 (1993).

    Article  ADS  Google Scholar 

  19. T. Holstein: Polaron motion. I. Molecular crystal model, Ann. Phys. (N. Y.) 8, 325, 343 (1959).

    Article  MATH  ADS  Google Scholar 

  20. H. McConnell: Intramolecular charge transfer in aromatic free radicals, J. Chem. Phys. 35, 508 (1961).

    Article  ADS  Google Scholar 

  21. J. Jortner: Temperature dependent activation energy for electron transfer between biological molecules, J. Chem. Phys. 64, 4860 (1976); V. Mujca, M. Kemp, M. Roitberg, and M.A. Ratner: Electron conduction in molecular wires. I. A scattering formalism and II. Application to scanning tunneling microscopy, J. Chem. Phys. 101, 6849, 6856 (1994).

    Article  ADS  Google Scholar 

  22. J. Tersoff, and D.R. Hamann: Theory of the scanning tunneling microscope, Phys. Rev. B, 31, 805 (1985).

    Article  ADS  Google Scholar 

  23. R. Landauer: Spatial variation of currents and field due to localized scatterers in metallic conduction, IBM J. Res. Dev. 1, 223, (1957); R. Landauer: Electrical resistance of disordered one-dimensional lattices, Phil. Mag., 21, 863 (1970).

    Article  MathSciNet  Google Scholar 

  24. C.W.J. Beenakker, and H. van Houten: Advances in research and applications. Qantum transport in semiconductor nanostructures, Solid State Physics, 44, 1 (Academic Press, New York, 1991).

    Google Scholar 

  25. L.V. Keldysh, Sov. Phys. JETP, 20, 1018 (1965).

    MathSciNet  Google Scholar 

  26. L. P. Kadanoff, and G. Baym, Quantum Statistical Mechanics; Green's function Methods in Equilibrium and Nonequilibrium (W.A. Benjamin, New York, 1962).

    Google Scholar 

  27. Y. Meir and N.S. Wingreen: Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  28. T. Seideman, and W.H. Miller: Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function, J. Chem. Phys., 97, 2499 (1992); T. Seideman, and W.H. Miller: Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions, J. Chem. Phys, 96, 4412 (1992).

    Article  ADS  Google Scholar 

  29. S. Datta, Electric transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995); S. Datta, to be published.

    Google Scholar 

  30. Y. Xue, S. Datta, and M.A. Ratner: Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation, J. Chem. Phys., 115, 4292 (2001).

    Article  ADS  Google Scholar 

  31. L.E. Hall, J.R. Reimers, N.S. Hush, et al.: Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires, J. Chem. Phys., 112, 1510 (2000).

    Article  ADS  Google Scholar 

  32. S. Datta, W.D. Tian, S.H. Hong, et al.: Current-voltage characteristics of selfassembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett., 79, 2530 (1997).

    Article  ADS  Google Scholar 

  33. H. Ness, and A.J. Fisher: Quantum inelastic conductance through molecular wires, Phys. Rev. Lett., 83, 452 (1999); E.G. Petrov, I.S. Tolokh, and V. May: The magnetic-field influence on the inelastic electron tunnel current mediated by a molecular wire, J. Chem. Phys., 109, 9561 (1998); E.G. Emberly, and G. Kirczenow: Electron standing-wave formation in atomic wires, Phys. Rev. B, 60, 6028 (1999); E.G. Emberly, and G. Kirczenow: Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts, Phys. Rev. B, 64, 235412 (2001); M. Brandbyge et al.: Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 65, 165401 (2002); B. Larade, et al.: Conductance, I-V curves, and negative differential resistance of carbon atomic wires, Phys. Rev. B, 64, 075420 (2001); J. Taylor, H. Guo, J. Wang: Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B, 63, 121104(R) (2001); M. Magoga, and C. Joachim: Minimal attenuation for tunneling through a molecular wire, Phys. Rev. B, 57, 1820 (1998); M. Magoga, and C. Joachim: Conductance of molecular wires connected or bonded in parallel, Phys. Rev. B, 59, 16011 (1999); P. Stampfus, et al., in Proceedings NIC Symposium; D. Wolf, G. Munster, M. Kremer, eds., 20, 101 (2003); R. Baer and D. Neuhauser: Ab initio electrical conductance of a molecular wire, Int. J. Quant. Chem., 91, 524 (2003); R. Baer, et al: Ab initio study of the alternating current impedance of a molecular junction, J. Chem. Phys. 120, 3387 (2004).

    Article  ADS  Google Scholar 

  34. J.K. Tomfohr, and O. Sankey: Complex band structure, decay lengthg, and Fermi level alignment in simple molecular electronic systems, Phys. Rev. B, 65, 245105 (2002); B. Larade, J. Taylor, H. Mehrez, and H. Guo: Conductance, I-V curves, and negative differential resistance of carbon atomic wires, Phys Rev. B, 64, 075420 (2001); J. Taylor, H. Guo, and J. Wang: Ab initio modeling of open systems; Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B, 63, 121104(R) (2001); H. Mehrez, G. Hong, J. Wang, and C. Roland: Carbon nanotubes in the Coulomb blockade regime, Phys. Rev. B, 63, 245410/1 (2001); A. di Carlo et al.: Theoretical tools for transport in molecular nanostructures, Physica B, 314, 86 (2002); J.C. Cuevas et al.: theoretical description of the electrical conduction in atomic and molecular junctions, Nanotechnology, 14, R29 (2003); J.J. Palacios et al.: First-principal approach to electrical transport in atomic-scale nanostructures, Phys. Rev. B, 66, 035322 (2002).

    Article  ADS  Google Scholar 

  35. Y.Q. Xue and M.A. Ratner: Microscopic study of electrical transport through individual molecules with metallic contacts. (2). Effect fo the interface structure, Phys. Rev. B, 68, 115407 (2003); and: Schottky barrier at metal-finite semiconduction carbon nanotube interfaces, Appl. Phys. Lett. 83, 2429 (2003).

    Article  ADS  Google Scholar 

  36. T. Seideman, and H. Guo: Quantum transport and current-triggered dynamics in molecular tunnel junctions, J. Theor. Comp. Chem., 2, 439 (2004).

    Article  Google Scholar 

  37. N.D. Lang: Resistance of atomic wires, Phys. Rev. B, 52, 5335 (1995).

    Article  ADS  Google Scholar 

  38. N.D. Lang, and P. Avouris: Carbon-atom wires: Charge-transfer doping, voltage drop, and the effect of distortions, Phys. Rev. Lett., 84, 358 (2000).

    Article  ADS  Google Scholar 

  39. M. diVentra, S. Pantelides, and N. Lang: Erratum: Current-induced forces in molecular wires [Phys. Rev. Lett., 88, 046801 (2002)], Phys. Rev. Lett., 89, 139902 (2002); M. Di Ventra, and S.T. Pantelides: Scanning tunneling microscopy images: A full ab initio approach, Phys. Rev. B, 59, R5320 (1999).

    Article  ADS  Google Scholar 

  40. S.N. Rashkeev, M. Di Ventra, and S.T. Pantelides: Transport in molecular transistors: Symmetry effects and nonlinearities, Phys. Rev. B, 66, 033301/1 (2002); Y. Zhongqin, N.D. Lang, and M. Di Ventra: Effects of geometry and doping on the operation of molecular transistors, App. Phys. Lett., 82, 1938 (2003); S.T. Pantelides, M. Di Ventra, and N.D. Lang: First-principles simulations of molecular electronics, Ann. N.Y. Acad. Sci., 960, 177 (2002); S.T. Pantelides, M. Di Ventra, N.D. Lang, and S.N. Rashkeev: Molecular electronics by the numbers, IEEE Transactions on Nanotechnology, 1, 86 (2002); M. Di Ventra, N.D. Lang, and S.T. Pantelides: Electronic transport in single molecules, Chem. Phys., 281, 189 (2002); M. Di Ventra, S.T. Pantelides, and N.D. Lang: Current-induced forces in molecular wires, Phys. Rev. Lett., 88, 046801 (2002); M. Di Ventra, and N.D. Lang: Transport in nanoscale conductors from first principles, Phys. Rev. B, 65, 045402 (2002).

    Article  ADS  Google Scholar 

  41. A. Troisi, and M.A. Ratner: Molecular wires conductance: Some theoretical and computational aspects, Molecular Nanoelectronics, M.A. Reed, and T. Lee, eds., 1 (American Scientific Publishers, Stevenson Ranch, CA, 2003).

    Google Scholar 

  42. R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C.V. Hemert, and J.M. van Ruitenbeek: Measurement of the conductance of a hydrogen molecule, Nature, 419, 906 (2002).

    Article  ADS  Google Scholar 

  43. M. Fuhrer, S.A. Getty, L. Wang, C. Engtrakul, and L. R. Sita: Near-perfect conduction through a ferrocene-based molecular wire, unpublished.

    Google Scholar 

  44. A. Nitzan: A relationship between electron-transfer rates and molecular conduction, J. Phys. Chem. A, 105, 2677 (2001).

    Article  Google Scholar 

  45. A. Nitzan: The relationship between electron-transfer rate and molecular conduction. (2). The sequential hopping case, Israel J. Chem., 42, 163 (2002).

    Article  Google Scholar 

  46. R.A. Marcus: On the theory of electron-transfer reactions. (6). Unified treatment for homogeneous and electrode reactions, J. Chem. Phys., 43, 679 (1965); M.D. Newton: Quantum chemical probes of electron-transfer kinetics: The nature of donor acceptor interactions, Chem. Rev., 91, 767 (1991).

    Article  ADS  Google Scholar 

  47. D.M. Adams et al.: Charge transfer on the nanoscale: Current status, J. Phys. Chem. B, 107, 6668 (2003)

    Article  Google Scholar 

  48. J. Park, A.N. Pasupathy, J.I. Goldsmith, C.C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 417, 722 (2002); W. Liang et al.: Kondo resonance in a single-molecule transistor, Nature 417, 725 (2002)

    Article  ADS  Google Scholar 

  49. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm: Single-electron transistor of a single organic molecule with access to several redox states, Nature, 425, 698 (2003).

    Article  ADS  Google Scholar 

  50. D. Segal and A. Nitzan: Steady-state quantum mechanics of thermally relaxing systems, Chem. Phys. 268, 315 (2001); D. Segal, and A. Nitzan: Heating in current carrying molecular junctions, J. Chem. Phys., 117, 3915 (2002).

    Article  ADS  Google Scholar 

  51. D. Segal, A. Nitzan, and P. Hanggi: Thermal conductance through molecular wires, J. Chem. Phys., 119, 6840 (2003).

    Article  ADS  Google Scholar 

  52. Y.-C. Chen, M. Zwolak, and M. DiVentra: Local heating in nanoscale conductors, Nano Lett., 3, 1691 (2003); T.N. Todorov: Local heating in ballistic atomic-scale contacts, Philosoph. Mag. B, 77(4), 965 (1998); M.J. Montgomery, T.N. Todorov, and A.P. Sutton: Power dissipation in nanoscale conductors, J. Phys.: Cond. Matt., 14, 5377 (2002).

    Article  ADS  Google Scholar 

  53. B.C. Stipe, M.A. Rezaei, and W. Ho: Inducing and viewing the rotational motion of a single molecule, Science, 279, 1907 (1998).

    Article  ADS  Google Scholar 

  54. B.C. Stipe, M.A. Rezaei, and W. Ho: Localiztion of inelastic tunneling and the determination of atomic-scale structure with chemical specifity, Phys. Rev. Lett., 82, 1724 (1999).

    Article  ADS  Google Scholar 

  55. T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, and H. Ueba: Lateral hopping of molecules induced by excitation of internal vibration mode, Science, 295, 2055 (2002).

    Article  ADS  Google Scholar 

  56. S. Alavi, B. Larade, J. Taylor, H. Guo, and T. Seideman: Current-triggered vibrational excitation in single-molecule transistors, Chem. Phys., 281, 293 (2002); T. Seideman: Current-triggered dynamics in molecular-scale devices, J. Phys.: Cond. Matt., 15, R521 (2003); B.N.J. Persson, and H. Ueba; Theory of inelastic tunneling induced motion of adsorbates on metal surfaces, Surf. Sci., 12, 502 (2002).

    Article  Google Scholar 

  57. S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett., 85, 2777 (2000); G.V. Nazin, X.H. Qiu, and W. Ho: Visualization and spectroscopy of a metal-molecule-metal bridge, Science, 302, 77 (2003); J.R. Hahn, and W. Ho: Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope, Phys. Rev. Lett., 87, 166102 (2001).

    Article  ADS  Google Scholar 

  58. E.L. Wolf, Principles of electron tunneling spectroscopy (Oxford University Press, New York, 1985); K.W. Hipps and U. Mazur: Inelastic electron tunneling: An alternative molecular spectroscopy, J. Phys. Chem., 97, 7803 (1993).

    Google Scholar 

  59. H.J. Lee and W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science, 286, 1719 (1999); N. Lorente, M. Persson, L.J. Lauhon, and W. Ho: Symmetry selection rules for vibrationally inelastic tunneling, Phys. Rev. Lett., 86, 2593 (2001); J.R. Hahn, and W. Ho: Single molecule imaging and vibrational spectroscopy with a chemical modified tip of a scanning tunneling microscope, Phys. Rev. Lett., 87, 196102 (2001); L.J. Lauhon and W. Ho: Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope, Phys. Rev. Lett., 85, 4566 (2000); J. Gaudioso, J.L. Laudon, and W. Ho: Vibrationally mediated negative differential resistance in a single molecule, Phys. Rev. Lett., 85, 1918 (2000); L.J. Lauhon and W. Ho: Single-electron vibrational spectroscopy and microscopy: CO on Cu(001) and Cu(110), Phys. Rev. B, 60, R8525 (1999); H.J. Lee and W. Ho: Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls, Phys. Rev. B, 61, R16347 (2000).

    Article  Google Scholar 

  60. J.R. Hahn, H.J. Lee, and W. Ho: Electronic resonance and symmetry in single-molecule inelastic electron tunneling, Phys. Rev. Lett., 85, 1914 (2000).

    Article  ADS  Google Scholar 

  61. N.B. Zhitenev, H. Meng, and Z. Bao: Conductance of small molecular junctions, Phys. Rev. Lett., 88, 226801 (2002); H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, and P.L. McEuen: Nanomechanical oscillations in a single-C60 transistor, Nature, 407, 57 (2000).

    Article  ADS  Google Scholar 

  62. W. Wang, T. Lee, I. Kretzschmar, and M.A. Reed: Inelastic electron tunneling spectroscopy of alkanedithiol self-assembled monolayers, Nano Lett., 4, 643 (2004); J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, and G.C. Bazan: Vibronic contributions to charge transport across molecular junctions, Nano Lett., 4, 639 (2004).

    Article  ADS  Google Scholar 

  63. A. Nitzan, M. Galperin, and M.A. Ratner: Inelastic electron tunneling spec-troscopy in molecular junctions: Peaks and dips, submitted for publication (cond-mat/0405472).

    Google Scholar 

  64. A. Nitzan, J. Jortner, J. Wilkie, et al.: Tunneling time for electron transfer reactions, J. Phys. Chem. B, 104, 5661–5665 (2000).

    Article  Google Scholar 

  65. U. Peskin, A. Edlund, I. Bar-On, et al.: Transient resonance structures in electron tunneling through water, J. Chem. Phys., 111, 7558 (1999).

    Article  ADS  Google Scholar 

  66. E. Yablonovitch: The chemistry of solid-state electronics, Science, 246, 347 (1989).

    Article  ADS  Google Scholar 

  67. R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. Lundstrom: A simple quantum mechanical treatment of scattering in nanoscale transistors, J. App. Phys., 93, 5613 (2003); M. Buttiker: Four-terminal phase-coherent conductance, Phys. Rev. Lett., 57, 1761 (1986).

    Article  ADS  Google Scholar 

  68. M. Bixon, and J. Jortner: Vibrational coherence in nonadiabatical dynamics, J. Chem. Phys., 107, 1470 (1997).

    Article  ADS  Google Scholar 

  69. M. Bixon, and J. Jortner: Electron transfer via bridges, J. Chem. Phys., 107, 5154 (1997).

    Article  ADS  Google Scholar 

  70. Y. Selzer, et al.: Temperature effects on conduction through a molecular junction, Nanotechnology 15, S483 (2004); and: Thermally activated conduction in molecular junctions, J. Am. Chem. Soc. 126, 4052 (2004).

    Article  ADS  Google Scholar 

  71. B. Giese et al.: Direct observation of the hole transfer through DNA by hopping between adenine beaes and by tunneling, Nature 412, 318 (2001).

    Article  ADS  Google Scholar 

  72. D. Segal, A. Nitzan, W.B. Davis, M.R. Wasilewski, and M.A. Ratner: Electron transfer rates in bridged molecular systems. 2. A steady-state analysis of coherent tunneling and thermal transitions, J. Phys. Chem. B, 104, 3817 (2000); D. Segal, and A. Nitzan: Conduction in molecular junctions: Inelastic effects, Chem. Phys., 281, 235 (2002); D. Segal, and A. Nitzan: Steady-state quantum mechanics of thermally relaxing systems, Chem. Phys., 268, 315 (2001), and references therein.

    Article  Google Scholar 

  73. D. Segal, and A. Nitzan: Heating in current carrying molecular junctions, J. Chem. Phys., 117, 3915 (2002).

    Article  ADS  Google Scholar 

  74. X.H. Qiu, G.V. Nazin, and W. Ho: Vibronic states in single molecule electron transport, Phys. Rev. Lett., 92, 206102 (2004).

    Article  ADS  Google Scholar 

  75. B.N.J. Persson, and A. Baratoff: Inelastic electron tunneling from a metal tip: The contribution from resonant processes, Phys. Rev. Lett., 59, 339 (1987).

    Article  ADS  Google Scholar 

  76. A. Bayman, P. Hansma, and W.C. Kaska: Shifts and dips in inelastic-electron-tunneling spectra due to the tunnel-junction environment, Phys. Rev. B, 24, 2449 (1981).

    Article  ADS  Google Scholar 

  77. M. Galperin, M.A. Ratner, and A. Nitzan: Hysteresis, switching and negative differential reistance in molecular junctions: A polaron model, Nano Letters, 5(1), 125 (2005).

    Article  ADS  Google Scholar 

  78. M.R. Wasielewski: Photoinduced electron transfer in supramolecular systems for artificial photosynthesis, Chem. Rev., 92, 435 (1992).

    Article  Google Scholar 

  79. G. Closs, J.R. Miller: Intramolecular long-distance electron transfer in organic molecules, Science, 240, 440 (1988).

    Article  ADS  Google Scholar 

  80. J. Lehmann, S. Kohler, P. Hanggi, and A. Nitzan: Molecular wires acting as coherent quantum ratchets, Phys. Rev. Lett., 88, 228305 (2002); J. Lehmann, S. Kohler, P. Hanggi, and A. Nitzan: Rectification of laser-induced eletronic transport through molecules, J. Chem. Phys., 118, 3283 (2002); S. Kohler, S. Camalet, M. Strass, J. Lehmann, G.-L. Ingold, and P. Hanggi: Charge transport through a molecule driven by a high-frequency field, Chem. Phys., 296, 243 (2004); J. Lehmann, S. Camalet, S. Kohler, and P. Hanggi: Laser controlled molecular switches and transistors, Chem. Phys. Lett., 368, 282 (2003); A. Keller, O. Atabek, M. Ratner, and V. Mujica: Laser-assisted conductance of molecular wires, J. Phys. B Atomic Molecular & Optical Physics, 35, 4981 (2002); A. Tikhonov, R.D. Coalson, and Y. Dahnovsky: Calculating electron transport in a tight-binding model of a field driven molecular wire: Floquet theory, J. Chem. Phys., 116, 10909 (2002); A. Tikhonov, R.D. Coal-son, and Y. Dahnovsky: Calculating electron current in a tight-binding model of a field driven molecular wire: Application to xylyl-dithiol, J. Chem. Phys., 117, 567 (2002).

    Article  ADS  Google Scholar 

  81. Y. Kamada, N. Naka, S. Saito, N. Nagasawa, Z.M. Li, and Z.K. Tang: Photo-irradiation effects on electrical conduction of single wall carbon nanotubes, Solid State Communications, 123, 375 (2002); V. Gerstner, A. Knoll, W. Pfeiffer, A. Thon, and G. Gerber: Femtosecond laser assisted scanning tunneling microscopy, J. Appl. Phys., 88, 4851 (2000); R.J. Schoelkopf, A.A. Kozhevnikov, D.E. Prober, and M.J. Rooks: Observation of “photon-assisted” shot-noise in a phase-coherent conductor, Phys. Rev. Lett., 80, 2437 (1998); R.J. Schoelkopf, P.J.B. , A.A. Kozhevnikov, D.E. Prober, and M.J. Rooks: Frequency dependence of shot noise in a diffusive mesoscopic conductor, Phys. Rev. Lett., 78, 3370 (1997); B.J. Keay, S.J. Allen, Jr., J. Galán, J.P. Kamin-ski, K.L. Campman, A.C. Gossard, U. Bhattacharya, and M.J.W. Rodwell: Photon-assisted electric field domains and multiphoton-assisted tunneling in semiconductor superlattices, Phys. Rev. Lett., 75, 4098 (1995); Dulic D, et al.: One-way optoelectronic switching of photochromic molecules on gold, Phys. Rev. Lett., 91, 207402 (2003).

    Article  ADS  Google Scholar 

  82. T. Frauenheim, et al.: Atomistic simulations of complex materials: Ground state and excited-state properties, J. Phys. Cond. Matt., 14, 3015 (2002).

    Article  ADS  Google Scholar 

  83. C.W. Bauschlicher, Jr., A. Ricca, Y. Xue, and M.A. Ratner: Current-voltage curves for molecular junctions: pyrene versus diphenylacetylene, Chem. Phys. Lett., 390, 246 (2004); J.M. Seminario, L.E. Cordova and P.A. Derosa: An ab initio approach to the calculation of current-voltage characteristics of programmable molecular devices, Proc. IEEE 91, 1958 (2000); Y. Xue, S. Datta, and M.A. Ratner: Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation, J. Chem. Phys., 115, 4292 ( 2001).

    Article  ADS  Google Scholar 

  84. K. Tagami, L. Wang, and M. Tsukada: Interface sensitivity in quantum transport through single molecules, Nano Lett., 4, 209 (2004); E. Emberly and G. Kirczenow: Molecular spintronics: Spin-dependent electron transport in molecular wires, Chem. Phys. 281, 311(2002); E.G Petrov, I.S. Tolokh and V. May: Magnetic field control of an electron tunnel current through a molecular wire, J. Chem. Phys. 108, 4386(1998).

    Article  ADS  Google Scholar 

  85. Z.Q. Yang and M. Di Ventra: Nonlinear current-induced forces in Si atomic wires, Phys. Rev. B 67, 161311 (2003).

    Article  ADS  Google Scholar 

  86. X.-Y. Zhu: Charge transport at metal-molecule interfaces: A spectroscopic view, J. Phys. Chem. B, 108, (2004).

    Google Scholar 

  87. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak: Current-voltage characteristics of self-assembled monolayers by scanning tunnelling microscopy, Phys. Rev. Lett., 79, 2530 (1997); W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: Conductance spectra of molecular wires, J. Chem. Phys., 109, 2874 (1998); Y. Xue, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: Negative differential resistance in the scanning tunneling spectroscopy of organic molecules, Phys. Rev. B, 59, R7852 (1999).

    Article  ADS  Google Scholar 

  88. V. Mujica, A.E. Roitberg and M. Ratner: Molecular wire conductance: Eloctrostatic potential spatial profile, J. Chem. Phys. 112, 6834 (2000)

    Article  ADS  Google Scholar 

  89. A. Xue, and M.A. Ratner: Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure, Phys. Rev. B, 68, 115407 (2003).

    Article  ADS  Google Scholar 

  90. C. Liang, A.W. Ghosh, M. Paulsson, S. Datta: Electrostatic potential profiles of molecular conductors, Phys. Rev. B, 69, 115302 (2004).

    Article  ADS  Google Scholar 

  91. M. Di Ventra, S.T. Pantelides, and N.D. Lang: The benzene molecule as a molecular resonant-tunneling transistor, App. Phys. Lett., 76, 3448 (2000).

    Article  ADS  Google Scholar 

  92. A. Bachtold, et al.: Scanned probe microscopy of electronic transport in carbon nanotubes, Phys. Rev. Lett., 84, 6082 (2000).

    Article  ADS  Google Scholar 

  93. Y. Karzazi, et al.: Influence of contact geometry and molecular derivatization on the interfacial interactions between gold and conjugated wires, Chem. Phys. Lett., 387, 502 (2004); H. Basch, and M.A. Ratner: Binding at molecule/gold transport interfaces. II. Orbitals and density of states, J. Chem. Phys., 119, 11943 (2003).

    Article  ADS  Google Scholar 

  94. F. Zahid, M. Paulsson and S. Datta: Electrical conduction through molecules, in Advanced Semiconductors and Organic Nanotechniques, H. Morkoc, ed., (Academic Press, New York, 2003).

    Google Scholar 

  95. F. Zahid, M. Paulsson et al., to be published.

    Google Scholar 

  96. A. Rassolov, M.A. Ratner, and J.A. Pople: Semiempirical models for image eletrostatics. I. Bare external charge, J. Chem. Phys., 114, 2062 (2001).

    Article  ADS  Google Scholar 

  97. V. Mujica, M. Kemp, and M.A. Ratner: Electron conduction in molecular wires. I. A scattering formalism and II. Application to scanning tunneling microscopy, J. Chem. Phys., 101, 6849, 6856 (1994).

    Article  ADS  Google Scholar 

  98. D.S. Kosov: Schrödinger equation for current carrying states, J. Chem. Phys., 116, 6368 (2002); J. Tomfohr, O. F. Sankey: Theoretical analysis of electron transport through organic molecules, J. Chem. Phys., 120, 1542 (2004); K. Thygesen et al., work in progress; R. Car, K. Burke, et al, work in progress.

    Article  ADS  Google Scholar 

  99. J. Reichert, H.B. Weber, M. Mayor, H.V. Lohneysen: Low-temperature conductance measurements on single molecules, Appl. Phys. Lett., 82, 4137 (2003); J.O. Lee et al.: Electrical transport study of phenylene-based π-conjugated molecules in a three terminal geometry, Annals Of The New York Academy Of Sciences, 1006, 122 (2003); D. Janes et al., to be published; M.A. Reed, et al.: Conductance of a molecular junction, Science, 278, 252 (1997). The structure assumed here may be incorrect: e.g. P.L. Pugmire, M.J. Tarlov, R.D. van Zee: The structure of benzenedimethanethiol self-assembled monolayers on gold grown by solution and vapor techniques, Langmuir, 19, 3720 (2003).

    Article  ADS  Google Scholar 

  100. N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam: Room temperature negative differential resistance through individual organic molecules on silicon surfaces, Nano Lett., 4, 55 (2004).

    Article  ADS  Google Scholar 

  101. X.P. Cao, R.J. Hamers: Silicon surfaces as electron acceptors: Dative bounding of amines with Si(001) and Si(111) surfaces, J. Am Chem Soc 123, 10988 (2001); S.N. Patitsas et al.: Current-induced organic-silicon bond breaking: Consequences for molecular devices, Surf. Sci. 457, L425 (2000)

    Article  Google Scholar 

  102. J.G. Kushmerick, et al.: Understanding charge transport in molecular electronics, Ann. NY Acad. Sci. 1006, 277 (2003)

    Article  ADS  Google Scholar 

  103. X.D. Cui, et al.: Reproducible measurement of single-molecule conductivity, Science, 294, 571(2001).

    Article  ADS  Google Scholar 

  104. B. Mantooth, et al.: Cross-correlation image tracking for adsorbate analysis and drift correction, Rev. Sci. Inst., 73, 313 (2002).

    Article  ADS  Google Scholar 

  105. R.P. Andres, et al.: “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure, Science 272, 1323 (1996); A. Dhirani, et al.: Self-assembled molecular rectifiers, J. Chem. Phys. 106, 5249 (1997); R. McCreery, et al.: Molecular rectification and conductance swithing in carbon-based molecular junctions by structural rearrangement accompanying electron injection, J. Am. Chem. Soc. 125, 10748 (2003); D.J. Wold, et al.: Distance dependence of electron tunneling through aelf-assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions, J. Phys. Chem. B, 106, 2813 (2002)

    Article  ADS  Google Scholar 

  106. C. Lin, and C.R. Kagan: Layer-by-layer growth of metal-metal bonded supramolecular thin films and its use in the fabrication of lateral nanoscale devices, J. Am. Chem. Soc., 125, 336 (2003).

    Article  Google Scholar 

  107. Y. Selzer, et al.: Temperature effects on conduction through a molecular junction, Nanotechnology, 15, S483 (2004).

    Article  ADS  Google Scholar 

  108. H. Basch, and M.A. Ratner, unpublished.

    Google Scholar 

  109. G. Poirier: Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy, Chem. Revs., 97, 1117 (1997).

    Article  Google Scholar 

  110. S. Liu, R. Maoz, J. Sagiv: Planned nanostructures of colloidal gold via self-assemply on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality, Nano Lett., 4, 845 (2004).

    Article  ADS  Google Scholar 

  111. X.Y. Xiao, B.Q. Xu, N.J. Tao: Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol; Nano Lett., 4, 267 (2004).

    Article  ADS  Google Scholar 

  112. W. Wang, T. Lee, and M.A. Reed: Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B, 68, 035416 (2003).

    Article  ADS  Google Scholar 

  113. J.W. Gadzuk and E.W. Plummer: Field emission energy distribution (FEED), Revs. Mod. Phys., 45, 487 (1973).

    Article  ADS  Google Scholar 

  114. G.G. Fagas, A. Kambili and M. Elstner: Complex band structure: A method to determine the off-resonant electron transport in oligomers, Chem. Phys. Lett., 389, 268 ( 2004); V. Mujica, and M.A. Ratner: Current-voltage characteristics of tunneling molecular junctions for off-resonance injection, Chem. Phys., 264, 395 (2002).

    Article  ADS  Google Scholar 

  115. W. Wang, T. Lee, and M.A. Reed: Intrinsic molecular electronic transport: Mechanisms and mehtods, J. Phys. Chem. B, in press.

    Google Scholar 

  116. C.C. Kaun, H. Guo: Resistance of alkanethiol molecular wires, Nano Lett., 3, 1521 (2003).

    Article  ADS  Google Scholar 

  117. H. Basch, and M.A. Ratner: Binding at molecule/gold transport interfaces. V. Comparison of different metals and molecular bridges, submitted to J. Chem. Phys.

    Google Scholar 

  118. A. Salomon, et al.: Comparison of electronic transport measurements on organic molecules, Adv. Mat. 15, 1881 (2003)

    Article  Google Scholar 

  119. P.E. Kornilovitch, A.M. Bratkovsky, and R. S. Williams: Bistable molecular conductors with a field-switchable dipole group, Phys. Rev. B, 66, 245413 (2002).

    Article  ADS  Google Scholar 

  120. E.G. Emberly, and G. Kirczenow: The smallest molecular switch, Phys. Rev. Lett., 91, 188301 (2003).

    Article  ADS  Google Scholar 

  121. A. Troisi, M.A. Ratner: Conformational molecular rectifiers, Nano Lett., 4, 591 (2004).

    Article  ADS  Google Scholar 

  122. T. Rakshit, G.C. Liang, A. Ghosh, S. Datta: Silicon based molecular electronics, cond-mat/0305695 (2003), submitted to Phys. Rev. Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Jortner, J., Nitzan, A., Ratner, M.A. (2006). Foundations of Molecular Electronics – Charge Transport in Molecular Conduction Junctions. In: Cuniberti, G., Richter, K., Fagas, G. (eds) Introducing Molecular Electronics. Lecture Notes in Physics, vol 680. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31514-4_2

Download citation

Publish with us

Policies and ethics