Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 151))

  • 1445 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnello M., Belli G., Bendiscioli G., Bertin A., Botta E., Bressani T., Bruschi M., Bussa M.P., Busso L., Calvo D. et al. (1995): Antiproton slowing down in H2 and He and evidence of nuclear stopping power. Phys Rev Lett 74, 371–374

    Article  ADS  Google Scholar 

  • Andersen H.H. (1991): Accelerators and stopping power experiments. In A. Gras-Marti, H.M. Urbassek, N.R. Arista and F. Flores, editors, Interaction of charged particles with solids and surfaces, vol. B 271 of NATO ASI Series, 145–192. Plenum, New York

    Google Scholar 

  • Andersen H.H., Bak J.F., Knudsen H. and Nielsen B.R. (1977): Stopping power of Al, Cu, Ag and Au for MeV hydrogen, helium, and lithium ions. Z 31 and Z 41 proportional deviations from the Bethe formula. Phys Rev A 16, 1929

    Article  ADS  Google Scholar 

  • Andersen H.H., Garfinkel A.F., Hanke C.C. and Sørensen H. (1966): Stopping power of aluminium for 5–12 MeV protons and deuterons. Mat Fys Medd Dan Vid Selsk 35 no. 4, 1–24

    Google Scholar 

  • Andersen H.H., Sørensen H. and Vajda P. (1969): Excitation potentials and shell corrections for elements. Phys Rev 180, 373–380

    Article  ADS  Google Scholar 

  • Andersen H.H. and Ziegler J.F. (1977): Hydrogen stopping powers and ranges in all elements, vol. 2 of The Stopping and Ranges of Ions in Matter. Pergamon, New York

    Google Scholar 

  • Arbó D.G., Gravielle M.S. and Miraglia J.E. (2000): Second-order Born collisional stopping of ions in a free-electron gas. Phys Rev A 62, 032901-1-7

    Google Scholar 

  • Arista N.R. (2002): Energy loss of heavy ions in solids: non-linear calculations for slow and swift ions. Nucl Instrum Methods B 195, 91–105

    Article  ADS  Google Scholar 

  • Arista N.R. and Lifschitz A.F. (1999): Nonlinear calculation of stopping powers for protons and antiprotons in solids: the Barkas effect. Phys Rev A 59, 2719–2722

    Article  ADS  Google Scholar 

  • Ashley J.C., Ritchie R.H. and Brandt W. (1972): Z 31 Effect in the stopping power of matter for charged particles. Phys Rev B 5, 2393–2397

    Article  ADS  Google Scholar 

  • Berger M.J., Coursey J.S. and Zucker M.A. (2005): Stopping-power and range tables for electrons, protons, and helium ions. URL http://physics.nist.gov/PhysRefData/Star/Text/

    Google Scholar 

  • Berkowitz J. (1979): Photoabsorption, photoionization and photoelectron spectroscopy. Academic Press, New York

    Google Scholar 

  • Berkowitz J. (2002): Atomic and molecular photoabsorption. Absolute total cross sections. Academic Press, San Diego

    Google Scholar 

  • Bloch F. (1933): Bremsvermögen von Atomen mit mehreren Elektronen. Z Physik 81, 363–376

    Article  MATH  ADS  Google Scholar 

  • Bohr N. (1913): On the theory of the decrease of velocity of moving electrified particles on passing through matter. Philos Mag 25, 10–31

    MATH  Google Scholar 

  • Bonderup E. (1967): Stopping of swift protons evaluated from statistical atomic model. Mat Fys Medd Dan Vid Selsk 35 no. 17, 1–20

    Google Scholar 

  • Brown L.M. (1950): Asymptotic expression for the stopping power of K-electrons. Phys Rev 79, 297–303

    Article  ADS  Google Scholar 

  • Burkig V.C. and MacKenzie K.R. (1957): Stopping power of some metallic elements for 19.8-MeV protons. Phys Rev 106, 848–851

    Article  ADS  Google Scholar 

  • Bush V. and Caldwell S.H. (1931): Thomas-Fermi equation solution by the differential analyzer. Phys Rev 38, 1898–1902

    Article  ADS  MATH  Google Scholar 

  • Cabrera-Trujillo R., Sabin J.R., Deumens E. and Öhrn Y. (2004): Calculation of cross sections in electron-nuclear dynamics. Adv Quantum Chem 47, 253–274

    Article  ADS  Google Scholar 

  • Chu W.K. and Powers D. (1972a): Calculations of mean excitation energy for all elements. Phys Lett 40A, 23–24

    ADS  Google Scholar 

  • Chu W.K. and Powers D. (1972b): On the Z 2 dependence of stopping cross sections for low energy alpha particles. Phys Lett A 38, 267–268

    Article  ADS  Google Scholar 

  • Darwin C.G. (1912): A theory of the absorption and scattering of the α rays. Phil Mag (6) 23, 901–921

    MATH  Google Scholar 

  • Dehmer J.L., Inokuti M. and Saxon R.P. (1975): Systematics of dipole oscillator-strength distributions for atoms of the first and second row. Phys Rev A 12, 102–121

    Article  ADS  Google Scholar 

  • Deumens E., Diz A., Longo R. and Öhrn Y. (1994): Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems. Rev Mod Phys 66, 917–983

    Article  ADS  Google Scholar 

  • Echenique P.M., Nieminen R.M. and Ritchie R.H. (1981): Density functional calculation of stopping power of an electron gas for slow ions. Sol St Comm 37, 779–781

    Article  ADS  Google Scholar 

  • Fermi E. (1927): Un metodo statistico per la determinazione di alcune proprietá dell’ atomo. Rend Acad Lincei 6, 602

    Google Scholar 

  • Fermi E. (1928): Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendungen auf die Theorie des periodischen Systems der Elemente. Z Physik 48, 73

    Article  MATH  ADS  Google Scholar 

  • Geissel H., Weick H., Scheidenberger C., Bimbot R. and Gardès D. (2002): Experimental studies of heavy-ion slowing down in matter. Nucl Instrum Methods B 195, 3–54

    Article  ADS  Google Scholar 

  • Golser R. and Semrad D. (1991): Observation of a striking departure from velocity proportionality in low-energy electronic stopping. Phys Rev Lett 66, 1831–1833

    Article  ADS  Google Scholar 

  • Gombas P. (1956): Statistische Behandlung des Atoms. In S. Flügge, editor, Handbuch der Physik, vol. 36, 109–231. Springer, Berlin

    Google Scholar 

  • Grande P.L. and Schiwietz G. (1991): Impact-parameter dependence of electronic energy loss and straggling of incident bare ions on H and He atoms by using the coupled-channel method. Phys Rev A 44, 2984–2992

    Article  ADS  Google Scholar 

  • Grande P.L. and Schiwietz G. (1993): Nonperturbative stopping-power calculation for bare and neutral hydrogen incident on He. Phys Rev A 47, 1119–1122

    Article  ADS  Google Scholar 

  • Grande P.L. and Schiwietz G. (1998): Impact-parameter dependence of the electronic energy loss of fast ions. Phys Rev A 58, 3796–3801

    Article  ADS  Google Scholar 

  • Grande P.L. and Schiwietz G. (2002): The unitary convolution approximation for heavy ions. Nucl Instrum Methods B 195, 55–63

    Article  ADS  Google Scholar 

  • Grande P.L. and Schiwietz G. (2004): CasP version 3.1. URL www.hmi.de/people/schiwietz/casp.html

    Google Scholar 

  • Grüner F., Bell F., Assmann W. and Schubert M. (2004): Integrated approach to the electronic interaction of swift heavy ions with solids and gases. Physical Review Letters 93, 213201

    Article  ADS  Google Scholar 

  • Gryzinski M. (1965): Classical theory of atomic collisions. 1. Theory of inelastic collisions. Phys Rev 138, A336–358

    Article  MathSciNet  ADS  Google Scholar 

  • Harberger J., Johnson R.E. and Boring J.W. (1974a): Binary-encounter stopping cross-sections. 2. Calculations for helium in multielectron atoms, target z dependence. Phys Rev A 9, 1172–1181

    Article  ADS  Google Scholar 

  • Harberger J.H., Johnson R.E. and Boring J.W. (1974b): Binary-encounter stopping cross-sections. 1. Basic theory and calculations for helium in hydrogen. Phys Rev A 9, 1161–1171

    Article  ADS  Google Scholar 

  • Henke B.L., Gullikson E.M. and Davies J.C. (1993): X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At Data & Nucl Data Tab 54, 181–342

    Article  ADS  Google Scholar 

  • Herman F. and Skillman S. (1963): Atomic structure calculations. Prentice Hall, New Jersey

    Google Scholar 

  • ICRU (1984): Stopping powers for electrons and positrons, vol. 37 of ICRU Report. International Commission of Radiation Units and Measurements, Bethesda, Maryland

    Google Scholar 

  • ICRU (1993): Stopping powers and ranges for protons and alpha particles, vol. 49 of ICRU Report. International Commission of Radiation Units and Measurements, Bethesda, Maryland

    Google Scholar 

  • ICRU (2005): Stopping of ions heavier than helium, vol. 73 of ICRU Report. Oxford University Press, Oxford

    Google Scholar 

  • Inokuti M., Baer T. and Dehmer J.L. (1978): Addendum: Systematics of moments of dipole oscillator-strength distributions for atoms in the first and second row. Phys Rev A 17, 1229–1231

    Article  ADS  Google Scholar 

  • Inokuti M., Dehmer J.L., T. B. and Hanson J.D. (1981): Oscillator-strength moments, stopping powers, and total inelastic-scattering cross sections of all atoms through strontium. Phys Rev A 23, 95–109

    Article  ADS  Google Scholar 

  • Janni J.F. (1982a): Proton range-energy tables, 1 keV–10 GeV, part 1, for 63 compounds. At Data Nucl Data Tab 27, 147–339

    Article  ADS  Google Scholar 

  • Janni J.F. (1982b): Proton range-energy tables, 1 keV–10 GeV, part 2. elements. At Data Nucl Data Tab 27, 341–529

    Article  ADS  Google Scholar 

  • Johnson R.E. and Inokuti M. (1983): The local-plasma approximation to the oscillator-strength spectrum: How good is it and why? Comm At Mol Phys 14, 19–31

    Google Scholar 

  • Khandelwal G.S. and Merzbacher E. (1966): Stopping power of M electrons. Phys Rev 144, 349–352

    Article  ADS  Google Scholar 

  • Kührt E. and Wedell R. (1983): Energy-loss straggling and higher-order moments of energy-loss distributions for protons. Phys Lett A 96, 347–349

    Article  ADS  Google Scholar 

  • Kührt E., Wedell R., Semrad D. and Bauer P. (1985): Theoretical description of the stopping power of light-ions in the intermediate energy-range. phys stat sol B 127, 633–639

    Article  ADS  Google Scholar 

  • Lindhard J. (1976): The Barkas effect — or Z 31 , Z 41 -corrections to stopping of swift charged particles. Nucl Instrum Methods 132, 1–5

    Article  ADS  Google Scholar 

  • Lindhard J. and Scharff M. (1953): Energy loss in matter by fast particles of low charge. Mat Fys Medd Dan Vid Selsk 27 no. 15, 1–31

    Google Scholar 

  • Lindhard J. and Sørensen A.H. (1996): On the relativistic theory of stopping of heavy ions. Phys Rev A 53, 2443–2456

    Article  ADS  Google Scholar 

  • Lindhard J. and Winther A. (1964): Stopping power of electron gas and equipartition rule. Mat Fys Medd Dan Vid Selsk 34 no. 4, 1–22

    Google Scholar 

  • Mermin N.D. (1970): Lindhard dielectric function in the relaxation-time approximation. Phys Rev B 1, 2362–2363

    Article  ADS  Google Scholar 

  • Mikkelsen H.H., Meibom A. and Sigmund P. (1992): Intercomparison of atomic models for computing stopping parameters from the Bethe theory-atomic hydrogen. Phys Rev A 46, 7012–7018

    Article  ADS  Google Scholar 

  • Mikkelsen H.H. and Sigmund P. (1987): Impact parameter dependence of electronic energy loss: Oscillator model. Nucl Instrum Methods B 27, 266–275

    Article  ADS  Google Scholar 

  • Mikkelsen H.H. and Sigmund P. (1989): Barkas effect in electronic stopping power: Rigorous evaluation for the harmonic oscillator. Phys Rev A 40, 101–116

    Article  ADS  Google Scholar 

  • Møller S.P., Uggerhøj E., Bluhme H., Knudsen H., Mikkelsen U., Paludan K. and Morenzoni E. (1997): Direct measurement of the stopping power for antiprotons of light and heavy targets. Phys Rev A 56, 2930–2939

    Article  ADS  Google Scholar 

  • Mortensen E.H., Mikkelsen H.H. and Sigmund P. (1991): Impact parameter dependence of light-ion electronic energy loss. Nucl Instrum Methods B 61, 139–148

    Article  ADS  Google Scholar 

  • Oddershede J. and Sabin J.R. (1984): Orbital and whole-atom proton stopping power and shell corrections for atoms with Z < 36. At Data Nucl Data Tab 31, 275–297

    Article  ADS  Google Scholar 

  • Oddershede J., Sabin J.R. and Sigmund P. (1983): Predicted Z 2-structure and gas-solid difference in low-velocity stopping power of light ions. Phys Rev Lett 51, 1332–1335

    Article  ADS  Google Scholar 

  • Olivera G.H., Martínez A.E., Rivarola R.D. and Fainstein P.D. (1994): Electron-capture contribution to the stopping power of low-energy hydrogen beams passing through helium. Phys Rev A 49, 603–606

    Article  ADS  Google Scholar 

  • Olson R. (1989): Energy deposition by energetic heavy-ions in matter. Radiat Eff 110, 1–5

    Article  Google Scholar 

  • Olson R.E. (1996): Classical trajectory and Monte Carlo techniques. In Atomic, Molecular & Optical Physics Handbook, 664–668. American Institute of Physics

    Google Scholar 

  • Palik E.D. (1985): Handbook of optical constants, vol. 1 of Academic Press Handbook Series. Academic Press, Orlando

    Google Scholar 

  • Palik E.D. (1991): Handbook of optical constants of solids, vol. 2. Academic Press, Boston

    Google Scholar 

  • Palik E.D. (1996): Handbook of optical constants of solids, vol. 3. Academic Press, Boston

    Google Scholar 

  • Palik E.D. (2000): Electronic handbook of optical constants of solids — version 1.0. SciVision — Academic Press

    Google Scholar 

  • Pathak A.P. and Yussouff M. (1972): Charged particle energy loss to electron gas. phys stat sol B 49, 431–441

    Article  ADS  Google Scholar 

  • Paul H. (2005): Stopping power graphs. URL www.exphys.uni-linz.ac.at/stopping/

    Google Scholar 

  • Pitarke J.M. and Campillo I. (2000): Band structure effects on the interaction of charged particles with solids. Nucl Instrum Methods B 164, 147–160

    Article  ADS  Google Scholar 

  • Porter L.E. (2004): The Barkas-effect correction to Bethe-Bloch stopping power, vol. 46 of Adv. Quantum Chem., 91–119. Elsevier, New York

    Google Scholar 

  • Porter L.E. and Jeppesen R.G. (1983): Mean excitation energies and Barkas-effect parameters for Ne, Ar, Kr, and Xe. Nucl Instrum Methods B 204, 605–613

    Article  Google Scholar 

  • Sabin J.R. and Oddershede J. (1982): Shell corrections to electronic stopping powers from orbital mean excitation energies. Phys Rev A 26, 3209–3219

    Article  ADS  Google Scholar 

  • Schiwietz G. (1990): Coupled-channel calculation of stopping powers for intermediate-energy light ions penetrating atomic H and He targets. Phys Rev A 42, 296–306

    Article  ADS  Google Scholar 

  • Schiwietz G., Wille U., Diez Muino R., Fainstein P.D. and Grande P.L. (1996): Comprehensive analysis of the stopping power of antiprotons and negative muons in He and H2 gas targets. J Physics B 29, 307–321

    Article  ADS  Google Scholar 

  • Sharma A., Fettouhi A., Schinner A. and Sigmund P. (2004): Electronic stopping of swift ions in compounds. Nucl Instrum Methods B 218, 19–28

    Article  ADS  Google Scholar 

  • Sigmund P. (1982): Kinetic theory of particle stopping in a medium with internal motion. Phys Rev A 26, 2497–2517

    Article  ADS  Google Scholar 

  • Sigmund P. and Haagerup U. (1986): Bethe stopping theory for a harmonic oscillator and Bohr’s oscillator model of atomic stopping. Phys Rev A 34, 892–910

    Article  ADS  Google Scholar 

  • Sigmund P. and Schinner A. (2000): Binary stopping theory for swift heavy ions. Europ Phys J D 12, 425–434

    Article  ADS  Google Scholar 

  • Sigmund P. and Schinner A. (2001): Binary theory of antiproton stopping. Europ Phys J D 15, 165–172

    Article  ADS  Google Scholar 

  • Sigmund P. and Schinner A. (2002a): Binary theory of electronic stopping. Nucl Instrum Methods B 195, 64–90

    Article  ADS  Google Scholar 

  • Sigmund P. and Schinner A. (2002b): Binary theory of light-ion stopping. Nucl Instrum Methods B 193, 49–55

    Article  ADS  Google Scholar 

  • Sigmund P., Sharma A., Schinner A. and Fettouhi A. (2005): Valence structure effects in the stopping of swift ions. Nucl Instrum Methods B 230, 1–6

    Article  ADS  Google Scholar 

  • Smith D.Y., Shiles E. and Inokuti M. (1985): The optical constants of metallic aluminium. In E.D. Palik, editor, Handbook of optical constants of solids, vol. 1, 369. Academic Press, Orlando

    Google Scholar 

  • Sommerfeld A. (1932): Asymptotische Integration der Differentialgleichung des Thomas-Fermischen Atoms. Z Physik 78, 283–308

    Article  MATH  ADS  Google Scholar 

  • Sørensen A.H. (1990): Barkas effect at low velocities. Nucl Instrum Methods B 48, 10–13

    Article  ADS  Google Scholar 

  • Sternheimer R.M., Seltzer S.M. and Berger M.J. (1982): Density effect for the ionization loss of charged particles in various substances. Phys Rev B 26, 6067–6076

    Article  ADS  Google Scholar 

  • Thomas L.H. (1926): The calculation of atomic fields. Proc Cambr Philos Soc 23, 542–547

    Article  Google Scholar 

  • Walske M.C. (1952): The stopping power of K-electrons. Phys Rev 88, 1283–1289

    Article  ADS  Google Scholar 

  • Walske M.C. (1956): Stopping power of L-electrons. Phys Rev 101, 940–944

    Article  ADS  Google Scholar 

  • Ziegler J.F. (2005): Particle interactions with matter. URL www.srim.org

    Google Scholar 

  • Ziegler J.F., Biersack J.P. and Littmark U. (1985): The stopping and range of ions in solids. 1–319. Pergamon, New York

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Arriving at Numbers. In: Particle Penetration and Radiation Effects. Springer Series in Solid-State Sciences, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31718-X_7

Download citation

Publish with us

Policies and ethics