Skip to main content

High-Field Strength Functional MRI

  • Chapter
High Field Brain MRI

10.5 Conclusions

The use of high magnetic field strength fMRI units has the potential for improving considerably the sensitivity and specificity of functional studies. As a result of the high-field studies, fundamental neural dynamics taking place at a very small dimensional scale in specific laminar, columnar and multicolumnar domains have become directly visible. The advantages in terms of spatial resolution, temporal resolution, BOLD signal changes and noise behaviour depend on the acquisition sequence and on the practical combination of the acquisition parameters with the local microscopic brain structure. Nevertheless, high-field units can be expected to improve significantly the quality of the fMRI results and the level of neurophysiological information it is possible to gather from the data. The concurrent use of tailored processing strategies can make even more convenient the use of high-field systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Di Salle F, Formisano E, Linden DEJ, et al. (1999) Exploring brain function with magnetic resonance imaging. Eur J Radiol 30:84–94

    Article  PubMed  Google Scholar 

  2. Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 10:37–50

    PubMed  CAS  Google Scholar 

  3. Sereno MI, Dale AM, Reppas JB, et al. (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

    PubMed  CAS  Google Scholar 

  4. Kim S-G, Ugurbil K (1997) Functional magnetic resonance imaging of the humanbrain. J Neurosci Methods 74:229–243

    Article  PubMed  CAS  Google Scholar 

  5. Richter W, Somorjai R, Summers R, et al. (2000) Motor area activity during mental rotation studied by time-resolved single-trial fMRI. J Cogn Neurosci 12:310–320

    Article  PubMed  CAS  Google Scholar 

  6. Pfeuffer J, van de Moortele PF, Yacoub E, et al. (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17:272–286

    Article  PubMed  Google Scholar 

  7. Kim S-G, Lee S-P, Goodyear B, Silva AC (1999) Spatial resolution of BOLD and other fMRI techniques. In: Moonen CTW, Bandettini PA (eds) (1999) Functional MRI. Springer-Verlag, Heidelberg, pp 195–204

    Google Scholar 

  8. Frahm J, Merboldt KD, Henicke W (1993) Functional MRI of brain activation at high spatial resolution. Mag Reson Med 29:139–144

    CAS  Google Scholar 

  9. Menon RS, Ogawa S, Strupp JP, Ugurbil K (1997) Mapping ocular dominance columns in V1 using fMRI. J Neurophysiol 77:2780–2787

    PubMed  CAS  Google Scholar 

  10. Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169

    Article  PubMed  CAS  Google Scholar 

  11. Duong TQ, Kim DS, Ugurbil K, Kim SG (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98:10904–10909

    Article  PubMed  CAS  Google Scholar 

  12. Logothetis NK, Merkle H, Augath M, et al. (2002) Ultrahigh resolution fMRI in monkeys with implanted RF Coils. Neuron 35(2):227–242

    Article  PubMed  CAS  Google Scholar 

  13. Logothetis NK, Pauls J, Augath M, et al. (2001)Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  14. Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32:359–374

    Article  PubMed  CAS  Google Scholar 

  15. Villringer A (1999) Physiological changes during brain activation. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer-Verlag, Heidelberg, pp 3–13

    Google Scholar 

  16. Cordes D, Haughton VM, Arfanakis K, et al. (2001) Frequencies contributing to functional connectivity in the cerebral cortex in „esting-state“ data. Am J Neuroradiol 22(7):1326–1333

    PubMed  CAS  Google Scholar 

  17. Goelman G (2004) Radial correlation contrast — a functional connectivity MRI contrast to map changes in local neuronal communication. Neuroimage 23(4):1432–1439

    Article  PubMed  Google Scholar 

  18. Bandettini PA (1999) The temporal resolution of functional MRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer-Verlag, Heidelberg, pp 205–220

    Google Scholar 

  19. Hu X, Yacoub E, Le TH, Cohen ER, Ugurbil K (1999) Functional MRI signal decrease at the onset of stimulation. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer-Verlag, Heidelberg, pp 243–252

    Google Scholar 

  20. Ugurbil K, Toth L, Kim D-S (2003) How accurate is magnetic resonance imaging of brain function? Trends Neurosci 26(2):108–114

    Article  PubMed  CAS  Google Scholar 

  21. Goodyear BG, Menon RS (2001) Brief visual stimulation allows mapping of ocular dominance in visual cortex using fMRI. Hum Brain Mapp 14:210–217

    Article  PubMed  CAS  Google Scholar 

  22. Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9(4):416–429

    Article  PubMed  CAS  Google Scholar 

  23. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp 13(1):43–53

    Article  PubMed  CAS  Google Scholar 

  24. Seifritz E, Esposito F, Hennel F, et al. (2002) Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297:1706–1708

    Article  PubMed  CAS  Google Scholar 

  25. Seifritz E, Esposito F, Neuhoff JG, Di Salle F (2003) Response: sound analysis in auditory cortex — from temporal decomposition to perception. Trends Neurosci 26(5):231–232

    Article  PubMed  CAS  Google Scholar 

  26. Richter W, Ugurbil K, Georgopoulos A, Kim SG (1997) Time-resolved fMRI of mental rotation. Neuroreport 8(17): 3697–3702

    PubMed  CAS  Google Scholar 

  27. Kim SG, Richter W, Ugurbil K (1997) Limitations of temporal resolution in functional MRI. Magn Reson Med 37(4):631–636

    PubMed  CAS  Google Scholar 

  28. Formisano E, Linden DE, Di Salle F, et al. (2002) Tracking themind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35(1):185–194

    Article  PubMed  CAS  Google Scholar 

  29. Bellgowan PS, Saad ZS, Bandettini PA (2003) Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width. Proc Natl Acad Sci USA 100(3):1415–1419

    Article  PubMed  CAS  Google Scholar 

  30. Sodickson DK, Griswold MA, Jakob PM (1999) SMASH imaging. Magn Reson Imaging Clin N Am 7(2):237–254

    PubMed  CAS  Google Scholar 

  31. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962

    Article  PubMed  CAS  Google Scholar 

  32. Wiesinger F, Pruessmann KP, Boesiger P (2002) Potential and limitations of parallel imaging at high field strength. MAGMA 15(Suppl 1):447

    Google Scholar 

  33. Ogawa S, Lee T-M, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    Article  PubMed  CAS  Google Scholar 

  34. Gati JS, Menon RS, Rutt BK (1999) Field strength dependence of functional MRI signals. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer-Verlag, Heidelberg, pp 277–282

    Google Scholar 

  35. Ogawa S, Menon RS, Tank DW, et al. (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed  CAS  Google Scholar 

  36. Gati JS, Menon RS, Ugurbil K, Rutt BK (1997) Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med 38(2):296–302

    PubMed  CAS  Google Scholar 

  37. Hennig J, Speck O, Koch MA, Weiller C (2003) Functional magnetic resonance imaging: A review of methodological aspects and clinical applications. J Magn Reson Imaging 18(1):1–15

    Article  PubMed  Google Scholar 

  38. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45(4):595–604

    Article  PubMed  CAS  Google Scholar 

  39. McKeown MJ, Makeig S, Brown GG, et al. (1998) Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6(3):160–188

    Article  PubMed  CAS  Google Scholar 

  40. Esposito F, Formisano E, Seifritz E, et al. (2002) Spatial independent component analysis of functional MRI time-series: to what extent do results depend on the algorithm used? Hum Brain Mapp 16(3):146–157

    Article  PubMed  Google Scholar 

  41. Yang Y, Wen H, Mattay VS, et al. (1999) Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 and 4.0 T. Neuroimage 9:446–451

    Article  PubMed  CAS  Google Scholar 

  42. Bandettini PA, Wong EC, Jesmanowicz A, et al. (1994) MRI of human brain activation at 0.5T, 1.5T, and 3.0T: Comparison of DR2* and functional contrast to noise ratio. Abstr Proc Soc Magn Reson 2:434

    Google Scholar 

  43. Caparelli EC, Tomasi D, Ernst T (2005) The effect of small rotations on R2* measured with echo planar imaging. Neuroimage 15:1164

    Article  Google Scholar 

  44. Lewis SM, Jerde TA, Tzagarakis C, et al. (2005)Logarithmic transformation for high-field BOLD fMRI data. Exp Brain Res 15

    Google Scholar 

  45. Formisano E, Kim D-S, Di Salle, et al. (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40: 859–869

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Salle, F. et al. (2006). High-Field Strength Functional MRI. In: Salvolini, U., Scarabino, T. (eds) High Field Brain MRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31776-7_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-31776-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31775-3

  • Online ISBN: 978-3-540-31776-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics