Skip to main content

A Web-knowledge-based Clustering Model for Gene Expression Data Analysis

  • Chapter
Advances in Web Intelligence and Data Mining

Part of the book series: Studies in Computational Intelligence ((SCI,volume 23))

  • 663 Accesses

Abstract

Current microarray technology provides ways to obtain time series expression data for studying a wide range of biological systems. However, the expression data tends to contain considerable noise, which as a result may deteriorate the clustering quality. We propose a web-knowledge-based clustering method to incorporate the knowledge of gene-gene relations into the clustering procedure. Our method first obtains the biological roles of each gene through a web mining process, next groups genes based on their biological roles and the Gene Ontology, and last applies a semi-supervised clustering model where the supervision is provided by the detected gene groups. Under the guidance of the knowledge, the clustering procedure is able to cope with data noise. We evaluate our method on a publicly available data set of human fibroblast response to serum. The experimental results demonstrate improved quality of clustering compared to the clustering methods without any prior knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Adryan and R. Schuh. Gene-ontology-based clustering of gene expression data. Bioinforrnatics, 20(16).

    Google Scholar 

  2. S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 59–68, Seattle, WA, August 2004.

    Google Scholar 

  3. J. Cheng, J. Martin, M. Cline, T. Awad, and M. A. Siani-Rose. Gene expression profiling analysis augmented by mathematically transformed gene ontology. In International Conference on Intelligent Systems in Molecular Biology ISMB 2002, August 2002.

    Google Scholar 

  4. J.-H. Chiang and H.-C. Yu. Meke: discovering the functions of gene products from biomedical literature via sentence alignment. Bioinfomatics, 19(11):1417–1422, 2003.

    Article  Google Scholar 

  5. M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proceedings of Natural Academy Science, 95(25):14863–14868, December 1998.

    Article  Google Scholar 

  6. D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological networks and gene expression data. Bioinforrnatics, 18(Suppl 1).

    Google Scholar 

  7. V. R. Iyer, M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. F. Lee, J. M. Trent, L. M. Staudt, J. H. Jr., M. S. Boguski, and et al. The transcriptional program in the response of human fibroblasts to serum. Science, 283(1):83–87, January 1999.

    Article  Google Scholar 

  8. A. Lasgreid, T. R. Hvidsten, H. Midelfart, J. Komorowski, and A. K. Sandvik. Predicting gene ontology biological process from temporal gene expression patterns. Genome Res, 13:965–979, 2003.

    Article  Google Scholar 

  9. G. J. Nau, J. F. L. Richmond, A. Schlesinger, E. G. Jennings, E. S. Lander, and R. A. Young. Human macrophage activation programs induced by bacterial pathogens. Proceedings of Natural Academy of Sciences of the U. S. A., 99(3): 1503–1508, February 2002.

    Article  Google Scholar 

  10. A. Schliep, A. Schonhuth, and C. Steinhoff. Using hidden markov models to analyze gene expression time course data. Bioinforrnatics, 19:I264–I272, 2003.

    Article  Google Scholar 

  11. S. Soderland. Learning information extraction rules for semi-structured and free text. Machine Learning, 34(1–3):233–272, 1999.

    Article  MATH  Google Scholar 

  12. S. Tavazoie, J. Hughes, M. Campbell, R. Cho, and G. Church. Systematic determination of genetic network architecture, 1999.

    Google Scholar 

  13. M. L. Whitfield, G. Sherlock, A. J. Saldanha, J. I. Murray, C. A. Ball, K. E. Alexander, J. C. Matese, C. M. Perou, M. M. Hurt, P. O. Brown, and D. Botstein. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell, 13(6):1977–2000, June 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tang, N., Rao Vemuri, V. (2006). A Web-knowledge-based Clustering Model for Gene Expression Data Analysis. In: Last, M., Szczepaniak, P.S., Volkovich, Z., Kandel, A. (eds) Advances in Web Intelligence and Data Mining. Studies in Computational Intelligence, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33880-2_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-33880-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33879-6

  • Online ISBN: 978-3-540-33880-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics