Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartelink H, Roelofsen F, Eschwege F et al (1997) Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the European Organization for Research and Treatment of Cancer Radiotherapy and Gastrointestinal Cooperative Groups. J Clin Oncol 15:2040–2049

    PubMed  CAS  Google Scholar 

  • Baumann M, Liertz C, Baisch H et al (1994) Impact of overall treatment time of fractionated irradiation on local control of human FaDu squamous cell carcinoma in nude mice. Radiother Oncol 32:137–143

    Article  PubMed  CAS  Google Scholar 

  • Beck-Bornholdt HP, Dubben HH, Liertz-Petersen C, Willers H (1997) Hyperfractionation: Where do we stand? Radiother Oncol 43:1–21

    Article  PubMed  CAS  Google Scholar 

  • Begg AC (1990) Cisplatin and radiation: interaction probabilities and therapeutic possibilities. Int J Radiat Oncol Biol Phys 19:1183–1189

    PubMed  CAS  Google Scholar 

  • Belka C (2005) The fate of irradiated tumor cells. Oncogene, epub

    Google Scholar 

  • Berrios M, Osheroff N, Fisher PA (1985) In situ localization of DNA topoisomerase II, a major polypeptide component of the Drosophila nuclear matrix fraction. Proc Natl Acad Sci USA 82:4142–4146

    Article  PubMed  CAS  Google Scholar 

  • Bolla M, Collette L, Blank L et al (2002) Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360:103–106

    Article  PubMed  CAS  Google Scholar 

  • Brizel DM, Albers ME, Fisher SR et al (1998) Hyperfractionated irradiation with or without concurrent chemotherapy for locally advanced head and neck cancer. N Engl J Med 338:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Buda A, Fossati R, Colombo N et al (2005) Randomized trial of neoadjuvant chemotherapy comparing paclitaxel, ifosfamide, and cisplatin with ifosfamide and cisplatin followed by radical surgery in patients with locally advanced squamous cell cervical carcinoma: the SNAP01 Italian Collaborative Study. J Clin Oncol 23:4137–4145

    Article  PubMed  CAS  Google Scholar 

  • Budach V, Stuschke M, Budach W et al (2005) Hyperfractionated accelerated chemoradiation with concurrent fluorouracil-mitomycin is more effective than dose-escalated hyperfractionated accelerated radiation therapy alone in locally advanced head and neck cancer: final results of the radiotherapy cooperative clinical trials group of the German Cancer Society 95-06 Prospective Randomized Trial. J Clin Oncol 23:1125–1135

    Article  PubMed  CAS  Google Scholar 

  • Budach W, Gioioso D, Taghian A et al (1997) Repopulation capacity during fractionated irradiation of squamous cell carcinomas and glioblastomas in vitro. Int J Radiat Oncol Biol Phys 39: 743–750

    Article  PubMed  CAS  Google Scholar 

  • Budach W, Paulsen F, Welz S et al (2002) Mitomycin C in combination with radiotherapy as a potent inhibitor of tumour cell repopulation in a human squamous cell carcinoma. Br J Cancer 86:470–476

    Article  PubMed  CAS  Google Scholar 

  • Chang HJ, Jung KH, Kim DY et al (2005) Bax, a predictive marker for therapeutic response to preoperative chemoradiotherapy in patients with rectal carcinoma. Hum Pathol 36:364–371

    Article  PubMed  CAS  Google Scholar 

  • Dische S, Saunders M, Barrett A et al (1997) A randomised multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. Radiother Oncol 44:123–136

    Article  PubMed  CAS  Google Scholar 

  • Durand RE, LePard NE (1994) Modulation of tumor hypoxia by conventional chemotherapeutic agents. Int J Radiat Oncol Biol Phys 29:481–486

    PubMed  CAS  Google Scholar 

  • Durand RE, LePard NE (2000) Effects of mitomycin C on the oxygenation and radiosensitivity of murine and human tumours in mice. Radiother Oncol 56:245–252

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Heck MM (1985) Localization of topoisomerase II in mitotic chromosomes. J Cell Biol 100:1716–1725

    Article  PubMed  CAS  Google Scholar 

  • Efferth T, Volm M (2005) Pharmacogenetics for individualized cancer chemotherapy. Pharmacol Ther 107:155–176

    Article  PubMed  CAS  Google Scholar 

  • Eliaz RE, Nir S, Marty C, Szoka FC Jr (2004) Determination and modeling of kinetics of cancer cell killing by doxorubicin and doxorubicin encapsulated in targeted liposomes. Cancer Res 64:711–718

    Article  PubMed  CAS  Google Scholar 

  • Epstein RJ (1990) Drug-induced DNA damage and tumor chemosensitivity. J Clin Oncol 8:2062–2084

    PubMed  CAS  Google Scholar 

  • Evans TR, Yellowlees A, Foster E et al (2005) Phase III randomized trial of doxorubicin and docetaxel versus doxorubicin and cyclophosphamide as primary medical therapy in women with breast cancer: an anglo-celtic cooperative oncology group study. J Clin Oncol 23:2988–2995

    Article  PubMed  CAS  Google Scholar 

  • Farquhar C, Marjoribanks J, Basser R et al (2005) High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with metastatic breast cancer. Cochrane Database Syst Rev:CD003142

    Google Scholar 

  • Forastiere AA, Goepfert H, Maor M et al (2003) Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 349:2091–2098

    Article  PubMed  CAS  Google Scholar 

  • Geard CR, Jones JM (1994) Radiation and taxol effects on synchronized human cervical carcinoma cells. Int J Radiat Oncol Biol Phys 29:565–569

    PubMed  CAS  Google Scholar 

  • Gerard J, Romestaing P, Bonnetain F et al (2005) Preoperative chemoradiotherapy (CT-RT) improves local control in T3-4 rectal cancers: results of the FFCD 9203 randomized trial (Abstract). Int J Radiat Oncol Biol Phys 63(Suppl 1): S2–S3

    Article  Google Scholar 

  • Giocanti N, Hennequin C, Balosso J et al (1993) DNA repair and cell cycle interactions in radiation sensitization by the topoisomerase II poison etoposide. Cancer Res 53:2105–2111

    PubMed  CAS  Google Scholar 

  • Grau C, Overgaard J (1988) Effect of cancer chemotherapy on the hypoxic fraction of a solid tumor measured using a local tumor control assay. Radiother Oncol 13:301–309

    Article  PubMed  CAS  Google Scholar 

  • Green JA, Kirwan JM, Tierney JF et al (2001) Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: a systematic review and meta-analysis. Lancet 358:781–786

    Article  PubMed  CAS  Google Scholar 

  • Guner D, Belka C, Daniel PT (2003) Disruption of cell death signaling in cancer: impact on disease prognosis and response to therapy. Curr Med Chem Anti-Canc Agents 3:319–326

    Article  Google Scholar 

  • Hartley A, Ho KF, McConkey C, Geh JI (2005) Pathological complete response following pre-operative chemoradiotherapy in rectal cancer: analysis of phase II/III trials. Br J Radiol 78:934–938

    Article  PubMed  CAS  Google Scholar 

  • Hennequin C, Giocanti N, Favaudon V (1996) Interaction of ionizing radiation with paclitaxel (taxol) and docetaxel (taxotere) in HeLa and SQ20B cells. Cancer Res 56:1842–1850

    PubMed  CAS  Google Scholar 

  • Henness S, Davey MW, Harvie RM, Davey RA (2002) Fractionated irradiation of H69 small-cell lung cancer cells causes stable radiation and drug resistance with increased MRP1, MRP2, and topoisomerase II alpha expression. Int J Radiat Oncol Biol Phys 54:895–902

    Article  PubMed  CAS  Google Scholar 

  • Hill BT, Moran E, Etievant C et al (2000) Low-dose twice-daily fractionated X-irradiation of ovarian tumor cells in vitro generates drug-resistant cells overexpressing two multidrug resistance-associated proteins, P-glycoprotein and MRP1. Anticancer Drugs 11:193–200

    Article  PubMed  CAS  Google Scholar 

  • Horiot JC, Lopez-Torrecilla J, Begg AC et al (1997) Accelerated fractionation (AF) compared to conventional fractionation (CF) improves loco-regional control in the radiotherapy of advanced head and neck cancers: results of the EORTC 22851 randomized trial. Radiother Oncol 44:111–121

    Article  PubMed  CAS  Google Scholar 

  • Kallman RF, Bedarida G, Rapacchietta D (1992) Experimental studies on schedule dependence in the treatment of cancer with combinations of chemotherapy and radiotherapy. Front Radiat Ther Oncol 26:31–44

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim SH, Kolozsvary A, Khil MS (1992) Potentiation of radiation response in human carcinoma cells in vitro and murine fibrosarcoma in vivo by topotecan, an inhibitor of DNA topoisomerase I. Int J Radiat Oncol Biol Phys 22:515–518

    PubMed  CAS  Google Scholar 

  • Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5:516–525

    Article  PubMed  CAS  Google Scholar 

  • Lawrence TS, Davis MA, Maybaum J (1994) Dependence of 5-fluorouracil-mediated radiosensitization on DNA-directed effects. Int J Radiat Oncol Biol Phys 29:519–523

    PubMed  CAS  Google Scholar 

  • Lawrence TS, Davis MA, Tang HY, Maybaum J (1996a) Fluorodeoxyuridinemediated cytotoxicity and radiosensitization require S phase progression. Int J Radiat Biol 70:273–280

    Article  PubMed  CAS  Google Scholar 

  • Lawrence TS, Davis MA, Loney TL (1996b) Fluoropyrimidinemediated radiosensitization depends on cyclin E-dependent kinase activation. Cancer Res 56:3203–3206

    PubMed  CAS  Google Scholar 

  • Lawrence TS, Chang EY, Hahn TM (1996c) Radiosensitization of pancreatic cancer cells by 2′,2′-difluoro-2′-deoxycytidine. Int J Radiat Oncol Biol Phys 34:867–872

    Article  PubMed  CAS  Google Scholar 

  • Lawrence TS, Chang EY, Hahn TM, Shewach DS (1997) Delayed radiosensitization of human colon carcinoma cells after a brief exposure to 2′,2′-difluoro-2′-deoxycytidine (Gemcitabine). Clin Cancer Res 3:777–782

    PubMed  CAS  Google Scholar 

  • McGinn CJ, Miller EM, Lindstrom MJ et al (1994) The role of cell cycle redistribution in radiosensitization: implications regarding the mechanism of fluorodeoxyuridine radiosensitization. Int J Radiat Oncol Biol Phys 30:851–859

    PubMed  CAS  Google Scholar 

  • McGinn CJ, Shewach DS, Lawrence TS (1996) Radiosensitizing nucleosides. J Natl Cancer Inst 88:1193–1203

    PubMed  CAS  Google Scholar 

  • Milas L, Hunter NR, Mason KA et al (1994) Enhancement of tumor radioresponse of a murine mammary carcinoma by paclitaxel. Cancer Res 54:3506–3510

    PubMed  CAS  Google Scholar 

  • Milas L, Hunter NR, Mason KA et al (1995) Role of reoxygenation in induction of enhancement of tumor radioresponse by paclitaxel. Cancer Res 55:3564–3568

    PubMed  CAS  Google Scholar 

  • Miller EM, Kinsella TJ (1992) Radiosensitization by fluorodeoxyuridine: effects of thymidylate synthase inhibition and cell synchronization. Cancer Res 52:1687–1694

    PubMed  CAS  Google Scholar 

  • Miller SJ, Lavker RM, Sun TT (2005) Interpreting epithelial cancer biology in the context of stem cells: tumor properties and therapeutic implications. Biochem Biophys Acta 1756:25–52

    PubMed  CAS  Google Scholar 

  • Minckwitz G von, Blohmer JU, Raab G et al (2005) In vivo chemosensitivity-adapted preoperative chemotherapy in patients with early-stage breast cancer: the GEPARTRIO pilot study. Ann Oncol 16:56–63

    Article  Google Scholar 

  • Minsky BD, Pajak TF, Ginsberg RJ et al (2002) INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol 20:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Modarress M, Maghami FQ, Golnavaz M et al (2005) Comparative study of chemoradiation and neoadjuvant chemotherapy effects before radical hysterectomy in stage IB-IIB bulky cervical cancer and with tumor diameter greater than 4 cm. Int J Gynecol Cancer 15:483–488

    Article  PubMed  CAS  Google Scholar 

  • Molls M, Vaupel P (1998) Blood perfusion and microenvironment of human tumors. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moon Y, Todoroki T, Ohno T et al (2000) Enhanced radiation killing by 5-fluorouracil of biliary tract cancer cell lines. Int J Oncol 16:987–994

    PubMed  CAS  Google Scholar 

  • Naida JD, Davis MA, Lawrence TS (1998) The effect of activation of wild-type p53 function on fluoropyrimidinemediated radiosensitization. Int J Radiat Oncol Biol Phys 41:675–680

    Article  PubMed  CAS  Google Scholar 

  • Nehls O, Okech T, Hsieh CJ et al (2005) Low BAX protein expression correlates with disease recurrence in preoperatively irradiated rectal carcinoma. Int J Radiat Oncol Biol Phys 61:85–91

    Article  PubMed  CAS  Google Scholar 

  • Nelson WG, Liu LF, Coffey DS (1986) Newly replicated DNA is associated with DNA topoisomerase II in cultured rat prostatic adenocarcinoma cells. Nature 322:187–189

    Article  PubMed  CAS  Google Scholar 

  • Nieder C, Milas L, Ang KK (2003) Modification of radiation response: cytokines, growth factors, and other biological targets. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nielsen D, Maare C, Eriksen J et al (2001) Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation. Int J Radiat Oncol Biol Phys 51:1050–1057

    Article  PubMed  CAS  Google Scholar 

  • Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiotherapy. An international multicenter study. Radiother Oncol 77:18–24

    Article  PubMed  Google Scholar 

  • Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    Article  PubMed  CAS  Google Scholar 

  • Pinedo HM, Peters GF (1988) Fluorouracil: biochemistry and pharmacology. J Clin Oncol 6:1653–1664

    PubMed  CAS  Google Scholar 

  • Pollack A, Salem N, Ashoori F et al (2001) Lack of prostate cancer radiosensitization by androgen deprivation. Int J Radiat Oncol Biol Phys 51:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Rau B, Sturm I, Lage H et al (2003) Dynamic expression profile of p21WAF1/CIP1 and Ki-67 predicts survival in rectal carcinoma treated with preoperative radiochemotherapy. J Clin Oncol 21:3391–3401

    Article  PubMed  CAS  Google Scholar 

  • Reitsamer R, Peintinger F, Prokop E, Hitzl W (2005) Pathological complete response rates comparing 3 versus 6 cycles of epidoxorubicin and docetaxel in the neoadjuvant setting of patients with stage II and III breast cancer. Anticancer Drugs 16:867–870

    Article  PubMed  CAS  Google Scholar 

  • Roach M III, DeSilvio M, Lawton C et al (2003) Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol 21:1904–1911

    Article  PubMed  Google Scholar 

  • Robert J, Morvan VL, Smith D et al (2005) Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 54:171–196

    PubMed  Google Scholar 

  • Robertson JM, Shewach DS, Lawrence TS (1996) Preclinical studies of chemotherapy and radiation therapy for pancreatic carcinoma. Cancer 78:674–679

    PubMed  CAS  Google Scholar 

  • Rockwell S (1982) Cytotoxicities of mitomycin C and X rays to aerobic and hypoxic cells in vitro. Int J Radiat Oncol Biol Phys 8:1035–1039

    PubMed  CAS  Google Scholar 

  • Rosier JF, Beauduin M, Bruniaux M et al (1999) The effect of 2′-2′ difluorodeoxycytidine (dFdC, gemcitabine) on radiation-induced cell lethality in two human head and neck squamous carcinoma cell lines differing in intrinsic radiosensitivity. Int J Radiat Biol 75:245–251

    Article  PubMed  CAS  Google Scholar 

  • Ryu JS, Um JH, Kang CD et al (2004) Fractionated irradiation leads to restoration of drug sensitivity in MDR cells that correlates with down-regulation of P-gp and DNA-dependent protein kinase activity. Radiat Res 162:527–535

    Article  PubMed  CAS  Google Scholar 

  • Sauer R, Becker H, Hohenberger W et al (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351:1731–1740

    Article  PubMed  CAS  Google Scholar 

  • Schaake-Koning C, van den Bogaert W, Dalesio O et al (1992) Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med 326:524–530

    Article  PubMed  CAS  Google Scholar 

  • Seifert P, Baker LH, Reed ML (1975) Comparison of continuously infused 5-FU with bolus injection in treatment of patients with colorectal carcinoma. Cancer 36:123–128

    Article  PubMed  CAS  Google Scholar 

  • Shaked Y, Emmenegger U, Francia G et al (2005) Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65:7045–7051

    Article  PubMed  CAS  Google Scholar 

  • Shewach DS, Hahn TM, Chang E et al (1994) Metabolism of 2′,2′-difluoro-2′-deoxycytidine and radiation sensitization of human colon carcinoma cells. Cancer Res 54:3218–3223

    PubMed  CAS  Google Scholar 

  • Shimizu D, Ishikawa T, Ichikawa Y et al (2004) Current progress in the prediction of chemosensitivity for breast cancer. Breast Cancer 11:42–48

    Article  PubMed  Google Scholar 

  • Shimoyama M (1975) The cytocidal action of alkylating agents and anticancer antibodies against in-vitro cultured yoshida ascitis sarcoma cells. J Jpn Soc Cancer Ther 10:63–72

    CAS  Google Scholar 

  • Simoens C, Korst AE, De Pooter CM et al (2003) In vitro interaction between ecteinascidin 743 (ET-743) and radiation, in relation to its cell cycle effects. Br J Cancer 89:2305–2311

    Article  PubMed  CAS  Google Scholar 

  • Stadler P, Becker A, Feldmann HJ et al (1999) Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int J Radiat Oncol Biol Phys 44:749–754

    Article  PubMed  CAS  Google Scholar 

  • Staib P, Staltmeier E, Neurohr K (2005) Prediction of individual response to chemotherapy in patients with acute myeloid leukaemia using the chemosensitivity index Ci. Br J Haematol 128:783–791

    Article  PubMed  CAS  Google Scholar 

  • Steel GG (1979) Terminology in the description of drug-radiation interactions. Int J Radiat Oncol Biol Phys 5:1145–1150

    PubMed  CAS  Google Scholar 

  • Steel GG, Peckham MJ (1979) Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Int J Radiat Oncol Biol Phys 5:85–91

    PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Sturm I, Petrowsky H, Volz R et al (2001) Analysis of p53/BAX/p16(ink4a/CDKN2) in esophageal squamous cell carcinoma: high BAX and p16(ink4a/CDKN2) identifies patients with good prognosis. J Clin Oncol 19:2272–2281

    PubMed  CAS  Google Scholar 

  • Sui M, Dziadyk JM, Zhu X, Fan W (2004) Cell cycle-dependent antagonistic interactions between paclitaxel and gamma-radiation in combination therapy. Clin Cancer Res 10:4848–4857

    Article  PubMed  CAS  Google Scholar 

  • Taghian AG, Abi-Raad R, Assaad SI et al (2005) Paclitaxel decreases the interstitial fluid pressure and improves oxygenation in breast cancers in patients treated with neoadjuvant chemotherapy: clinical implications. J Clin Oncol 23:1951–1961

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF (1989) Combined modality treatment with radiotherapy and chemotherapy. Radiother Oncol 16:83–101

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF (1992) Potential for therapeutic gain from combined-modality treatment. Front Radiat Ther Oncol 26:1–15

    PubMed  CAS  Google Scholar 

  • Tannock IF (1998) Conventional cancer therapy: promise broken or promise delayed? Lancet 351(Suppl 2):SII9–SII16

    Article  PubMed  Google Scholar 

  • Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41:73–81

    PubMed  CAS  Google Scholar 

  • Thames HD, Suit HD (1986) Tumor radioresponsiveness versus fractionation sensitivity. Int J Radiat Oncol Biol Phys 12:687–691

    PubMed  CAS  Google Scholar 

  • Trott KR (1990) Cell repopulation and overall treatment time. Int J Radiat Oncol Biol Phys 19:1071–1075

    PubMed  CAS  Google Scholar 

  • Wahl AF, Donaldson KL, Fairchild C et al (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2:72–79

    Article  PubMed  CAS  Google Scholar 

  • Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 46:983–995

    PubMed  CAS  Google Scholar 

  • Wurschmidt F, Bardenheuer MJ, Muller WU, Molls M (2000) Chromosomal aberrations induced in mice bone marrow by treating with cisplatin and irradiation. Strahlenther Onkol 176:319–323

    Article  PubMed  CAS  Google Scholar 

  • Yang LX, Douple EB, O’Hara JA, Wang HJ (1995) Production of DNA double-strand breaks by interactions between carboplatin and radiation: a potential mechanism for radiopotentiation. Radiat Res 143:309–315

    PubMed  CAS  Google Scholar 

  • Yu YQ, Giocanti N, Averbeck D et al (2000) Radiation-induced arrest of cells in G2 phase elicits hypersensitivity to DNA double-strand break inducers and an altered pattern of DNA cleavage upon re-irradiation. Int J Radiat Biol 76:901–912

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belka, C., Nieder, C., Molls, M. (2006). Biological Basis of Combined Radio- and Chemotherapy. In: Brown, J.M., Mehta, M.P., Nieder, C. (eds) Multimodal Concepts for Integration of Cytotoxic Drugs. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-35662-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-35662-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25655-7

  • Online ISBN: 978-3-540-35662-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics