Skip to main content

A Reduced Input/Output Dynamic Optimisation Method for Macroscopic and Microscopic Systems

  • Chapter
Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena

Summary

Efficient optimisation algorithms based on model reduction methods are essential for the effective design of large-scale macroscopic, microscopic and multiscale systems. A model reduction based optimization scheme for input/output dynamic systems is presented. It is based on a multiple shooting discretization of the dynamic constraints. The reduced optimization framework is developed by combining an Newton-Picard Method [51], which identifies the (typically) low-dimensional slow dynamics of the (dissipative) model in each time subinterval of the multiple shooting discretization, with reduced Hessian techniques for a second reduction to the low-dimensional subspace of the control parameters. Optimal solutions are then computed in an efficient way using only low-dimensional numerical approximations of gradients and Hessians. We demonstrate the capabilities of this framework by performing dynamic optimization using an explicit tubular reactor transient model and by estimating kinetic parameters of a biochemical system whose dynamics are given by a microscopic Monte Carlo simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Raghavan, S. Ghosh: Adaptive multi-scale computational Modeling of composite materials. CMES-Computer Modeling Eng. Sci. 5, 151 (2004)

    MATH  Google Scholar 

  2. M. A. Gallivan, R. M. Murray: Reduction and identification methods for Markovian control systems, with application to thin film deposition Int. J. Robust and Nonlin. Control 14, 113 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Schlichting, K. Gersten: Boundary Layer Theory, 8th edn (Springer, Berlin Heidelberg New York 2000)

    MATH  Google Scholar 

  4. O. I. Tureyen J. Caers: A parallel, multiscale approach to reservoir modeling. Comput. Geosciences 9, 75 (2005)

    Article  MATH  Google Scholar 

  5. Y. G. Yanovsky: Multiscale modeling of polymer composite properties. Int. J. Multiscale Comput. Engineering 3, 199 (2005)

    Article  Google Scholar 

  6. G. Csanyi, T. Albaret, G. Moras, M. C. Payne, A De Vita: Multiscale hybrid simulation methods for material systems. J. Phys. Cond. Matter 17, R691 (2005)

    Article  ADS  Google Scholar 

  7. G. S. D. Ayton, S. Bardenhagen, P. McMurry, D. Sulski et al: Interfacing molecular dynamics with continuum dynamics in computer simulation: Toward an application to biological membranes. IBM J. Res. & Dev 45, 417 (2001)

    Article  Google Scholar 

  8. G. S. D. Ayton, G. A. Voth: Simulation of Biomolecular Systems at Multiple Length and Time Scales. Intl. J. Multiscale Comp. Eng. 2, 289 (2004)

    Google Scholar 

  9. R. D. Braatz, R. C. Alkire, E. Rusli et al: Multiscale systems engineering with applications to chemical reaction processes, Chem. Eng. Sci. 59, 5623 (2004)

    Article  Google Scholar 

  10. K. Burrage, T. Tian, P. Burrage: A multi-scaled approach for simulating chemical reaction systems. Biophys. Mol. Biol. 85, 217 (2004)

    Article  Google Scholar 

  11. J. Li, J. Zhang, W. Ge et al: Multi-scale methodology for complex systems. Chem. Eng. Sci. 59, 1687 (2004)

    Article  Google Scholar 

  12. H. H. McAdams, A. Arkin: It’s a nosiy business! Genetic regulation at the nanomolar scale. Trends Genet. 15, 65 (1999)

    Article  Google Scholar 

  13. R. E. Miller: Direct Coupling of Atomistic and Continuum Mechanics in Computational Materials Science. Intl. J. Multiscale Comp. Eng. 1, 5722 (2003)

    Google Scholar 

  14. E. Rusli, O. Drews, R. D. Braatz: System analysis and design of dynamically coupled multiscale reactor simulation codes. Chem. Eng. Sci. 59, 22 (2004)

    Google Scholar 

  15. M. K. Gobbert, T. P. Merchant, L. J. Borucki, T. S. Cale: A multiscale simulator for low pressure chemical vapor deposition. J. Electrochem. Soc. 144, 3945 (1997)

    Article  Google Scholar 

  16. K. F. Jensen, S. T. Rodgers, R. Venkataramani: Multiscale modeling of thin film growth. Curr. Opinion Solid State Mater. Sci. 3, 562 (1998)

    Article  Google Scholar 

  17. S. Ogata, T. Igarashi: Concurrent coupling of electronic-density-functional, molecular dynamics, and coarse-grained particles schemes for multiscale simulation of nanostructured materials. New Front. Proc. Engin. Advanced Mater. Sci. Forum 502, 33 (2005)

    Google Scholar 

  18. B. Protas, T. R. Bewley, G. Hagen: A computational framework for the regularization of adjoint analysis in multiscale PDE systems. J. Comp. Phys., 195, 49 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. M. D. Gunzburger: Perspectives in Flow Control and Optimization (SIAM Philadelphia 2003)

    Google Scholar 

  20. S. S. Sritharan: Optimal Control of Viscous flows (SIAM Philadelphia 1998)

    Google Scholar 

  21. A. Griewank, C. Faure: Reduced functions, gradients and Hessians from fixed-point iterations for state equations. Numer. Algorithms 30, 113 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. H. Engl, M. Hanke, A. Neubauer: Regularization of Inverse Problems (Kluwer Dordrecht 1996)

    Google Scholar 

  23. C. R. Vogel: Computational Methods for Inverse Problems (SIAM Philadelphia 2002)

    Google Scholar 

  24. J. Fish, A. Ghouali: Multiscale analytical sensitivity analysis for composite materials. Int. J. Numer. Methods Eng. 50 1501 (2001)

    Article  MATH  Google Scholar 

  25. Y. Liu, B. S. Minsker: Full multiscale approach for optimal control of in situ bioremediation. J. Water Res. Planning Management 130, 26 (2004)

    Article  Google Scholar 

  26. T. Binder, L. Blank, W. Dahmen, W. Marquardt: Iterative algorithms for multiscale state estimation, part 1: Concepts. J Optim. Theory Applic. 111, 501 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Lucia, P. A. DiMaggio, P. Depa: Funneling algorithms for multiscale optimization on rugged terrains. Ind. Eng. Chem. Res. 43, 3770 (2004)

    Article  Google Scholar 

  28. A. Lucia, F. Yang: Solving distillation problems by terrain methods. Comput. Chem. Eng. 28, 2541 (2002)

    Article  Google Scholar 

  29. B. Liu, H. Jiang, Y. Huang, S. Qu, M. F. Yu, K.C. Hwang: Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes. Phys. Rev. B 72, 035435 (2005)

    Article  ADS  Google Scholar 

  30. A. Varshney, A. Armaou: Multiscale optimization using hybrid PDE/kMC process systems with application to thin film growth. Chem. Eng. Sci. 60, 6780 (2005)

    Article  Google Scholar 

  31. L. Sirovich: Turbulence and the dynamics of coherent structures. 1. Coherent structures. Quart. Applied Math. XVL 573 (1987)

    MathSciNet  Google Scholar 

  32. S. Raimondeau, P. Aghalayam, A. B. Mhadeshwar, D.G. Vlachos: Parameter optimization of molecular models: Application to surface kinetics. Ind. Eng. Chem. Res. 42, 1174 (2003)

    Article  Google Scholar 

  33. R. Faber, T. Jockenhövel, G. Tsatsaronis: Dynamic optimization with simulated annealing Comp. Chem. Eng. 29, 273 (2005)

    Article  Google Scholar 

  34. E. H. L. Aarts and J. H. M. Korst: Simulated Annealing and Boltzmann Machines: a Stochastic Approach to Combinatorial Optimization and Neural computing, (Wiley, New York 1989)

    MATH  Google Scholar 

  35. I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, C. Theodoropoulos: Equation-Free coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level tasks. Comm. Math. Sci. 1, 715 (2003)

    MATH  MathSciNet  Google Scholar 

  36. C. Theodoropoulos, K. Sankaranarayanan, S. Sundaresan, I. G. Kevrekidis: Coarse bifurcation studies of bubble flow lattice Boltzmann simulations. Chem. Eng. Sci. 59 2357 (2004)

    Article  Google Scholar 

  37. A. Armaou, C. I. Siettos, I. G. Kevrekidis: Time-steppers and ‘coarse’ control of distributed microscopic processes. Int J. Robust Nonlin. Control 14 89 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. E. Luna-Ortiz, C. Theodoropoulos: An Input/Output Model Reduction-based optimization scheme for large-scale systems. Multiscale Model. Simul. 4, 691 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. A. Armaou, P. D. Christofides: Dynamic Optimization of dissipative PDE systems using nonlinear order reduction. Chem. Eng. Sci. 57, 5083 (2002)

    Article  Google Scholar 

  40. U. M. Ascher, R. M. M. Mattheij, R. D. Russell Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, (SIAM, Philadelphia 1995)

    MATH  Google Scholar 

  41. Z. Bai, G. W. Stewart: Algorithm 776: SRRIT: A Fortran Subroutine to Calculate the Dominant Invariant Subspace of a Nonsymmetric Matrix. ACM Trans. Math. Softw. 23, 494 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Barclay, P. E. Gill, J. B. Rosen: SQP Methods and their application to numerical optimal control. In: Variational Calculus, Optimal Control and Applications, vol 124, ed by W. H. Schmidt, K. Heier, L. Bittner et al, pp 207–222 (Birkhäuser Basel 1998)

    Google Scholar 

  43. J. T. Betts: A Survey of Numerical Methods for Trajectory Optimization. AIAA J. Guidance, Control and Dynamics 21, 193 (1998)

    Article  MATH  Google Scholar 

  44. R. W. H. Sargent: Optimal Control. J. Comp. Appl. Math. 124, 361 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. O. von Stryk, R. Burlisch: Direct and Indirect Methods for Trajectory Optimization. Annals Oper. Res. 37, 357 (1992)

    Article  MATH  Google Scholar 

  46. L. T. Biegler: Solution of Dynamic Optimization Problems by Succesive Quadratic Programming and Orthogonal Collocation. Comp. Chem. Eng. 8, 243 (1984)

    Article  Google Scholar 

  47. T. H. Tsang, D. M. Himmelblau, T. F. Edgar: Optimal Control via collocation and nonlinear programming. Intl. J. Control 21, 763 (1975)

    Article  MATH  Google Scholar 

  48. K. Lust, D. Roose, A. Spence et al: An adaptive Newton-Picard algorithm with subspace iteration for computing periodic solutions. SIAM J. Sci. Comput. 19, 1188 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. P. Eberhard, C. Bischof: Automatic Differentiation of Numerical Integration Algorithms. Math. Comp. 68, 717 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. D. B. Leineweber. I. Bauer, H. G. Bock et al: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: theoretical aspects. Comp. Chem. Eng. 27, 157 (2003)

    Article  Google Scholar 

  51. K. Lust: Bifurcation Analysis of Periodic Solutions of Partial Differential Equations. PhD Thesis, Katholieke Universiteit Leuven, Belgium (1997)

    Google Scholar 

  52. C. Schmid, L. T. Biegler: Acceleration of Reduced Hessian methods for Large-Scale nonlinear programming. Comp. Chem. Eng. 17, 451 (1993)

    Article  Google Scholar 

  53. T. Maly, L. R. Petzold: Numerical Methods and software for sensitivity analysis of differential-algebraic systems. Appl. Numer. Math. 20, 57 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  54. L. T. Biegler, J. Nocedal, C. Schmid:A Reduced Hessian Method for Large-Scale Constrained Optimization. SIAM J. Optim. 5, 314 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  55. H. G. Bock, K. J. Plitt: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress, pp 431–439 (Pergamon Press 1984)

    Google Scholar 

  56. P. T. Boggs, J. W. Tolle: Sequential Quadratic Programming for large-scale nonlinear optimization. J. Comp. Appl. Math. 124, 123 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. O. Buchauer, P. Hiltman, M. Kiehl: Sensitivity analysis of initial-value problems with applications to shooting techniques. Numer. Math. 67, 151 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  58. E. Luna-Ortiz C. Theodoropoulos: Manuscript in preparation

    Google Scholar 

  59. K. L. Choong, R. Smith: Optimization of batch cooling crystallization. Chem. Eng. Sci. 59, 313 (2004)

    Article  Google Scholar 

  60. T. O. Drews, R. D. Braatz, R. C. Alkire: Parameter Sensitivity Analyisis of Monte Carlo Simulations of Copper Electrodeposition with Mutiple Additives. J. Electrochem. Soc. 150, C807 (2003)

    Article  Google Scholar 

  61. L. Edsberg, P. Wedin: Numerical tools for parameter estimation in ODE-systems. Optim. Meth. Softw. 6, 193 (1995)

    Article  Google Scholar 

  62. P. E. Gill, L. O. Jay, M. W. Leonard et al: An SQP method for the optimal control of dynamical systems. J. Comp. Appl. Math. 120, 197 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. P. E. Gill, W. Murray: Algorithms for the solution of the Nonlinear Least-Squares Problem. SIAM J. Numer. Anal. 15, 977 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  64. D. T. Gillespie: Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem. 81, 2340 (1977)

    Article  Google Scholar 

  65. M. Hanke, P. C. Hansen: Regularization methods for large-scale problems. Surv. Math. Industry 3, 253 (1993)

    MATH  MathSciNet  Google Scholar 

  66. F. Heinmets: Analog computer analysis of a model system for the induced enzyme synthesis, J. Theoret. Biol. 6, 60 (1964)

    Article  Google Scholar 

  67. K. F. Jensen, W. H. Ray: The bifurcation behavior of tubular reactors. Chem. Eng. Sci. 37, 199 (1982)

    Article  Google Scholar 

  68. K. Kunisch, E. W. Sachs: Reduced SQP Methods for Parameter Identification Problems. SIAM J. Numer. Anal. 29, 1793 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  69. D. W. Marquardt: An algorithm for least squares estimation of non-linear parameters. SIAM J. Appl. Math. 11, 431 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  70. K. Mosegaard, M. Sambridge: Monte Carlo analysis of inverse problems. Inverse Problems 18, 29 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  71. K. Schittkowski Numerical Data Fitting in Dynamical Systems — A Practical Introduction with Applications and Software (Kluwer, Dordrecht 2002)

    MATH  Google Scholar 

  72. W. Stortelder: Parameter Estimation in Nonlinear Dynamical Systems. PhD Thesis, CWI, Amsterdam, The Netherlands (1998)

    MATH  Google Scholar 

  73. C. R. Vogel: Computational Methods for Inverse Problems (SIAM, Philadelphia PA 2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theodoropoulos, C., Luna-Ortiz, E. (2006). A Reduced Input/Output Dynamic Optimisation Method for Macroscopic and Microscopic Systems. In: Gorban, A.N., Kevrekidis, I.G., Theodoropoulos, C., Kazantzis, N.K., Öttinger, H.C. (eds) Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-35888-9_24

Download citation

Publish with us

Policies and ethics