Skip to main content

Object Perception: Generative Image Models and Bayesian Inference

  • Conference paper
  • First Online:
Biologically Motivated Computer Vision (BMCV 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2525))

Included in the following conference series:

Abstract

Humans perceive object properties such as shape and material quickly and reliably despite the complexity and objective ambiguities of natural images. The visual system does this by integrating prior object knowledge with critical image features appropriate for each of a discrete number of tasks. Bayesian decision theory provides a prescription for the optimal utilization of knowledge for a task that can guide the possibly sub-optimal models of human vision. However, formulating optimal theories for realistic vision problems is a non-trivial problem, and we can gain insight into visual inference by first characterizing the causal structure of image features—the generative model. I describe some experimental results that apply generative models and Bayesian decision theory to investigate human object perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloj, M. G., Kersten, D., & Hurlbert, A. C. (1999). Perception of three-dimensional shape influences colour perception via mutual illumination. Nature, 402, 877–879.

    Google Scholar 

  2. Clark, J. J., & Yuille, A. L. (1990). Data Fusion for Sensory Information Processing. Boston: Kluwer Academic Publishers.

    Book  Google Scholar 

  3. Brainard, D. H., & Freeman, W. T. (1997). Bayesian color constancy. J Opt Soc Am A, 14, (7), 1393–411.

    Article  Google Scholar 

  4. Bültho., H. H., & Mallot, H. A. (1988). Integration of depth modules: stereo and shading. Journal of the Optical Society of America, A, 5, (10), 1749–1758.

    Article  Google Scholar 

  5. Drew, M., & Funt, B. (1990). Calculating surface reflectance using a single-bounce model of mutual reflection. Proceedings of the 3rd International Conference on Computer Vision Osaka: 393–399.

    Google Scholar 

  6. Foley, J., van Dam, A., Feiner, S., & Hughes, J. (1990). Computer Graphics Principles and Practice, (2nd ed.). Reading, Massachusetts: Addison-Wesley Publishing Company.

    Google Scholar 

  7. Gegenfurtner, K. R. (1999). Reflections on colour constancy. Nature, 402, 855–856.

    Article  Google Scholar 

  8. Geisler, W. S., & Kersten, D. (2002). Illusions, perception and Bayes. Nat Neurosci, 5, (6), 508–10.

    Article  Google Scholar 

  9. Green, D. M., & Swets, J. A. (1974). Signal Detection Theory and Psychophysics. Huntington, New York: Robert E. Krieger Publishing Company. 1974.

    Google Scholar 

  10. Grenander, U. (1996). Elements of Pattern theory. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  11. Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Res, 41, (10-11), 1409–22.

    Article  Google Scholar 

  12. Jacobs, R. A. (2002). “What determines visual cue reliability?” Trends Cogn Sci 6(8): 345–350.

    Article  MathSciNet  Google Scholar 

  13. Kersten, D. (1997). Inverse 3D Graphics: A Metaphor for Visual Perception. Behavior Research Methods, Instruments, & Computers, 29, (1), 37–46.

    Article  MathSciNet  Google Scholar 

  14. Kersten, D. (1999). High-level vision as statistical inference. In Gazzaniga, M. S. (Ed.), The New Cognitive Neurosciences — 2nd Edition(pp. 353–363). Cambridge, MA: MIT Press.

    Google Scholar 

  15. Kersten, D., & Schrater, P. R. (2002). Pattern Inference Theory: A Probabilistic Approach to Vision. In Mausfeld, R.,& Heyer, D. (Ed.), Perception and the Physical World (pp. Chichester: John Wiley& Sons, Ltd.

    Google Scholar 

  16. Knill, D. C., & Richards, W. (1996). Perception as Bayesian Inference. Cambridge: Cambridge University Press.

    Google Scholar 

  17. Landy, M. S., Maloney, L. T., Johnston, E. B., & Young, M. J. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research, 35, 389–412.

    Article  Google Scholar 

  18. Lerner, Y., Hendler, T., & Malach, R. (2002). Object-completion Effects in the Human Lateral Occipital Complex. Cereb Cortex, 12, (2), 163–77.

    Article  Google Scholar 

  19. Lorenceau, J., &amp Shiffrar, M. (1992). The influence of terminators on motion integration across space. Vision Res, 32, (2), 263–73.

    Article  Google Scholar 

  20. Lorenceau, J., & Alais, D. (2001). Form constraints in motion binding. Nat Neurosci, 4, (7), 745–51.

    Article  Google Scholar 

  21. Madison, C., Thompson, W., Kersten, D., Shirley, P., & Smits, B. (2001). Use of interreflection and shadow for surface contact. Perception and Psychophysics, 63, (2), 187–194.

    Article  Google Scholar 

  22. Mamassian, P., Knill, D. C., & Kersten, D. (1998). The Perception of Cast Shadows. Trends in Cognitive Sciences, 2, (8), 288–295.

    Article  Google Scholar 

  23. McDermott, J., Weiss, Y., & Adelson, E. H. (2001). Beyond junctions: nonlocal form constraints on motion interpretation. Perception, 30, (8), 905–23.

    Article  Google Scholar 

  24. Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern, 66, (3), 241–51.

    Article  Google Scholar 

  25. Murray, S. O., Kersten, D, Olshausen, B. A., Schrater P., & Woods, D.L. (Under review) Shape perception reduces activity in human primary visual cortex. Submitted to the Proceedings of the National Academy of Sciences.

    Google Scholar 

  26. Pearl, J. (1988).Probabilistic reasoning in intelligent systems: networks of plausible inference, (Rev. 2nd printing. ed.). San Mateo, Calif.: Morgan Kaufmann Publishers.

    Google Scholar 

  27. Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317, 314–319.

    Article  Google Scholar 

  28. Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects[see comments]. Nat Neurosci, 2, (1), 79–87.

    Article  Google Scholar 

  29. Ripley, B. Pattern Recognition and Neural Networks. Cambridge University Press. 1996.

    Google Scholar 

  30. Schrater, P. R., & Kersten, D. (2000). How optimal depth cue integration depends on the task. International Journal of Computer Vision, 40, (1), 73–91.

    Article  MATH  Google Scholar 

  31. Schrater, P., & Kersten, D. (2001). Vision, Psychophysics, and Bayes. In Rao, R. P. N., Olshausen, B. A., & Lewicki, M. S. (Ed.), Probabilistic Models of the Brain: Perception and Neural Function(pp. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  32. Simoncelli, E. P. (1997). Statistical Models for Images: Compression, Restoration and Synthesis. Pacific Grove, CA.: IEEE Signal Processing Society.

    Google Scholar 

  33. Weiss, Y., Simoncelli, E. P., &amp Adelson, E. H. (2002). Motion illusions as optimal percepts. Nat Neurosci, 5, (6), 598–604.

    Article  Google Scholar 

  34. Yuille, A.L., & BĂĽltho., H.H. (1996). Bayesian decision theory and psychophysics. In D.C., K., & W., R. (Ed.), Perception as Bayesian Inference(plCambridge, U.K.: Cambridge University Press.

    Google Scholar 

  35. Zhu, S.C., Wu, Y., and Mumford, D. (1997). “Minimax Entropy Principle and Its Application to Texture Modeling”. Neural Computation. 9(8).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kersten, D. (2002). Object Perception: Generative Image Models and Bayesian Inference. In: BĂĽlthoff, H.H., Wallraven, C., Lee, SW., Poggio, T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36181-2_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-36181-2_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00174-4

  • Online ISBN: 978-3-540-36181-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics