Skip to main content

Uniting Haptic Exploration and Display

  • Conference paper
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 6))

Abstract

This work develops a methodology for building haptic reality-based modeling systems by exploiting the complementary goals of haptic exploration and display. While the generally unstructured nature of haptic exploration makes it difficult to develop and control autonomous robotic fingers, simultaneous consideration of exploration and display provides a way to characterize the required sensing, control, finger geometry, and haptic modeling components. Both the exploring robot and haptic display must complement an appropriate virtual model, which can accurately recreate remote or hazardous environments. We present an example of haptic exploration, modeling and display for surface features explored using a three-degree-of-freedom spherical robotic fingertip with a tactile sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PK, Michelman P (1990) Acquisition and interpretation of 3-d sensor data from touch. IEEE Trans. on Robotics and Automation, 6(4):397–404.

    Article  Google Scholar 

  • Bay JS, Hemami H (1990) Dynamics of a learning controller for surface tracking robots on unknown surfaces. Proc. of the IEEE Int’l. Conf. on Robotics and Automation, pp 1910–1915.

    Google Scholar 

  • Blum H (1967) A transformation for extracting new descriptors of shape. Models for Perception of Speech and Vsiual Form, pp 362–380.

    Google Scholar 

  • Brandt JW, Algazi VR (1992) Continuous skeleton computation by voronoi diagram. CVGIP: Image Understanding, 55(3):329–338.

    Article  MATH  Google Scholar 

  • Corso J, Chhugani J, Okamura A (2002) Interactive haptic rendering of deformable surfaces based on the medial axis transform. Proc. Eurohaptics.

    Google Scholar 

  • Curless B, Levoy M (1996) A volumetric method for building complex models from range images. Computer Graphics, 30:303–312.

    Google Scholar 

  • d’Aulignac D, Balaniuk R, Laugier C (2000) A haptic interface for a virtual exam of the human thigh. Proc. IEEE Int’l. Conf. on Robotics and Automation, 3:2452–2457.

    Google Scholar 

  • Debus T, Dupont P, Howe R (2000) Automatic identification of local geometric properties during teleoperation. Proc. IEEE Int’l. Conf. on Robotics and Automation, pp 3428–3434.

    Google Scholar 

  • Ellis RE (1984) Extraction of tactile features by passive and active sensing. Intelligent Robots and Computer Vision, Proc. of SPIE, 521:289–295.

    Google Scholar 

  • Goldenberg AS, Wies EF, Martin K, Hasser CJ (1998) Next-generation 3d haptic feedback system. Poster, American Soc. of Mechanical Engineers Haptics Symposium.

    Google Scholar 

  • Hayward V, Armstrong B (2000) A new computational model of friction applied to haptic rendering. In Corke P, Trevelyan J (eds) Exp. Robotics VI, pp 403–412. Springer-Verlag.

    Google Scholar 

  • Hemami H, Bay JS, Goddard RE (1988) A conceptual framework of tactually guided exploration and shape perception. IEEE Trans. on Biomedical Engineering, 35(2):99–109.

    Article  Google Scholar 

  • Hogan N (1985) Impedance control: an approach to manipulation: parts i, ii, and iii. ASME Jnl. of Dynamic Systems, Measurement, and Control, 107:1–24.

    Article  MATH  Google Scholar 

  • Interrante V (1997) Illustrating surface shape in volume data via principal direction-driven 3d line integral convolution. Proc. 24th Int’l. Conf. on Computer Graphics and Interactive Techniques, pp 109–116.

    Google Scholar 

  • Klatzky RL, Lederman S (1990) Intelligent exploration by the human hand. In Venkataraman ST, Iberall T (eds) Dextrous Robot Hands, pp 66–81. Springer-Verlag.

    Google Scholar 

  • Koenderink JJ (1990) Solid shape. The MIT Press.

    Google Scholar 

  • Li ZX, Qin Z, Jiang S, Han L (1998) Coordinated motion generation and real-time grasping force control for multifingered manipulation. Proc. IEEE Int’l. Conf. on Robotics and Automation, pp 3631–3638.

    Google Scholar 

  • Lim CT, Turkiyyah GM, Ganter MA, Storti DW (1995) Implicit reconstruction of solids from cloud point sets. ACM SIGGRAPH Symposium on Solid Modeling and Applications, pp 393–402.

    Google Scholar 

  • Maekawa H, Tanie K, Komoriya K (1993) A finger-shaped tactile sensor using an optical waveguide. Proc. IEEE Int’l. Conf. on Systems, Man and Cybernetics, pp 403–408.

    Google Scholar 

  • Maekawa H, Tanie K, Komoriya K (1995) Tactile sensor based manipulation of an unknown object by a multifingered hand with rolling contact. Proc. of the IEEE Int’l. Conf. on Robotics and Automation, pp 743–750.

    Google Scholar 

  • Massie TH, Salisbury JK (1994) The phantom haptic interface: A device for probing virtual objects. Proc. ASME Dynamic Systems and Control Div., pp 295–299.

    Google Scholar 

  • Montana DJ (1988) The kinematics of contact and grasp. Int’l. Jnl. of Robotics Research, 7(3): 17–32.

    Article  Google Scholar 

  • Nicholls HR, Lee MH (1989) Survey of robot tactile sensing technology. Int’l. Jnl. of Robotics Research, 8(3):3–30.

    Article  Google Scholar 

  • Ogniewicz RL (1994) Skeleton-space: a multiscale shape description combining region and boundary information. Proc. IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition, pp 746–751.

    Google Scholar 

  • Okamura AM, Cutkosky MR (2001a) Feature detection for haptic exploration with robotic fingers. Int’l. Jnl. of Robotics Research, 20(12):925–938.

    Article  Google Scholar 

  • Okamura AM, Cutkosky MR (2001b) Feature-guided exploration with a robotic finger. Proc. IEEE Int’l. Conf. on Robotics and Automation, pp 589–596.

    Google Scholar 

  • Okamura AM, Dennerlein JT, Howe RD (1998) Vibration feedback models for virtual environments. Proc. of the IEEE Int’l. Conf. on Robotics and Automation, 1:674–679.

    Google Scholar 

  • Okamura AM, Smaby N, Cutkosky MR (2000) An overview of dexterous manipulation. Proc. IEEE Int’l. Conf. on Robotics and Automation, pp 255–262.

    Google Scholar 

  • Pai DK, Lang J, Lloyd JE, Woodham RJ (2000) Acme, a telerobotic active measurement facility. In Corke P, Trevelyan J (eds) Experimental Robotics VI, pp 391–400. Springer-Verlag.

    Google Scholar 

  • Patrikalakis NM, Gursoy HN (1990) Shape interrogation by medial axis transform. Proc. ASME DETC, Design Eng. Div., 3(1):77–88.

    Google Scholar 

  • Richard C, Cutkosky MR, MacLean K (1999) Friction identification for haptic display. Proc. ASME Dynamic Systems and Control Div., pp 327–334.

    Google Scholar 

  • Richmond JL, Pai DK (2000) Active measurement and modeling of contact sounds. Proc. IEEE Int’l. Conf. on Robotics and Automation, pp 2146–2152.

    Google Scholar 

  • Rossignac JR, Requicha AAG (1986) Offsetting operations in solid modeling. Computer Aided Geometric Design, 3(2): 129–148.

    Article  MATH  Google Scholar 

  • Stansfield S (1988) A robotic perceptual system utilizing passive vision and active touch. Int’l. Jnl. of Robotics Research, 7(6): 138–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okamura, A.M. (2003). Uniting Haptic Exploration and Display. In: Jarvis, R.A., Zelinsky, A. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36460-9_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-36460-9_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00550-6

  • Online ISBN: 978-3-540-36460-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics