Skip to main content

Digital Quadrature Demodulation of LFM Signals Obtained by Lowpass Filtering

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2542))

Included in the following conference series:

  • 1220 Accesses

Abstract

An effective digital demodulation system based on the technique of Ho, Chan and Inko is designed for quadrature demodulation of signals with a linear frequency modulation (LFM). The influence of LFM-signal parameters on the quality of demodulation is studied. Two variants of a sampling frequency are chosen, and a set of lowpass filters for Q-component generation is designed for each variant of a sampling frequency. The quality of demodulation is estimated in terms of absolute amplitude and phase errors evaluated as a function of system parameters. The results obtained in simulations show that the optimal choice of a sampling frequency (48 MHz) enables to reduce the imbalance phase errors to minimum (0.0012°) if the optimal equiripple lowpass filter with only 6 elements is chosen for Q-component generation.

Research supported under IIT-BAS Grant No 010044, MPS Ltd. Grant, BNF“SR” Grant No I-902/99.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rice, D. W., Wu, K. H.: Quadrature Sampling with High Dynamic Range. IEEE Trans., AES-18 (4) (1982) 736–739.

    Google Scholar 

  2. Watters, W. M., Jarrett, B. R.: Bandpass Signal Sampling and Coherent Detection. IEEE Trans., AES-18, 4 (1982) 740–749.

    Google Scholar 

  3. No, K. C., Chan, Y. I., Inkol, R.: A Digital Quadrature Demodulation System. IEEE Trans., AES-32, 4 (1996) 1218–1226.

    Google Scholar 

  4. Rabiner, L. R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall, New Jersey (1975)

    Google Scholar 

  5. Kabakchiev, C., Behar, V.: CFAR Radar Image Detection in Pulse Jamming. IEEE Fourth Int. Symp. ISSSTA’96, Mainz (1996) 182–185.

    Google Scholar 

  6. Behar, V., Kabakchiev, C., Doukovska, L.: Adaptive CA CFAR Processor for Radar Target Detection in Pulse Jamming. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, Vol. 26, 3 (2000) 386–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Behar, V., Kabakchiev, C. (2003). Digital Quadrature Demodulation of LFM Signals Obtained by Lowpass Filtering. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds) Numerical Methods and Applications. NMA 2002. Lecture Notes in Computer Science, vol 2542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36487-0_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-36487-0_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00608-4

  • Online ISBN: 978-3-540-36487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics