Skip to main content

Fluid-Structure Interaction Simulations Using Parallel Computers

Invited Talk

  • Conference paper
  • First Online:
High Performance Computing for Computational Science — VECPAR 2002 (VECPAR 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2565))

Abstract

A methodology to simulate large-scale fluid-structure interaction problems on parallel machines has been developed. Particular emphasis was placed on shock-structure interaction problems. For the fluid, a high-resolution FEM-FCT solver based on unstructured grids is used. The surface motion is handled either by moving, body fitted grids, or via surface embedding. For the structure, a Lagrangean large-deformation finite element code is employed. The coupled system is solved using a loose coupling algorithm, with position and velocity interpolation and force projection. Several examples, run on parallel machines, demonstrate the range of applicability of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Aftosmis, M. J. Berger and G. Adomavicius-A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries; AIAA-00-0808 (2000). 5

    Google Scholar 

  2. J.D. Baum. H. Luo and R. Löhner-Numerical Simulation of a Blast Inside a Boeing 747; AIAA-93-3091 (1993). 3

    Google Scholar 

  3. J.D. Baum, H. Luo and R. Löhner-Numerical Simulation of Blast in the World Trade Center; AIAA-95-0085 (1995). 3

    Google Scholar 

  4. J.D. Baum, H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman-A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck; AIAA-96-0795 (1996). 5

    Google Scholar 

  5. J.D. Baum, H. Luo and R. Löhner-The Numerical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies; AIAA-98-0788 (1998). 5, 17

    Google Scholar 

  6. J.R. Cebral and R. Löhner-Conservative Load Projection and Tracking for Fluid-Structure Problems; AIAA J. 35, 4, 687–692 (1997a). 9

    Article  MATH  Google Scholar 

  7. J.R. Cebral and R. Löhner-Fluid-Structure Coupling: Extensions and Improvements; AIAA-97-0858 (1997b). 9

    Google Scholar 

  8. J.R. Cebral and R. Löhner-Interactive On-Line Visualization and Collaboration for Parallel Unstructured Multidisciplinary Applications; AIAA-98-0077 (1998).

    Google Scholar 

  9. G.P. Guruswamy and C. Byun-Fluid-Structural Interactions Using Navier-Stokes Flow Equations Coupled with Shell Finite Element Structures; AIAA-93-3087 (1993). 9

    Google Scholar 

  10. E. Haug, H. Charlier, J. Clinckemaillie, E. DiPasquale, O. Fort, D. Lasry, G. Milcent, X. Ni, A.K. Pickett and R. Hoffmann-Recent Trends and Developments of Crashworthiness Simulation Methodologies and their Integration into the Industrial Vehicle Design Cycle; Proc. Third European Cars/Trucks Simulation Symposium (ASIMUTH), Oct. 28–30 (1991). 13

    Google Scholar 

  11. S.L. Karman-SPLITFLOW: A 3-D Unstructured Cartesian/ Prismatic Grid CFD Code for Complex Geometries; AIAA-95-0343 (1995). 5

    Google Scholar 

  12. A.M. Landsberg and J.P. Boris-The Virtual Cell Embedding Method: A Simple Approach for Gridding Complex Geometries; AIAA-97-1982 (1997). 5

    Google Scholar 

  13. M. Lesoinne and Ch. Farhat-Geometric Conservation Laws for Flow Problems With Moving Boundaries and Deformable Meshes, and Their Impact on Aeroelastic Computations; Comp. Meth. Appl. Mech. Eng. 134, 71–90 (1996). 9

    Article  MATH  Google Scholar 

  14. R. Löhner, K. Morgan, J. Peraire and M. Vahdati-Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations; ICASE Rep. 87-4, Int. J. Num. Meth. Fluids 7, 1093–1109 (1987). 4

    Article  MATH  Google Scholar 

  15. R. Löhner-Three-Dimensional Fluid-Structure Interaction Using a Finite Element Solver and Adaptive Remeshing; Computer Systems in Engineering 1, 2–4, 257–272 (1990). 5, 13

    Article  Google Scholar 

  16. R. Löhner and J. D. Baum-Adaptive H-Refinement on 3-D Unstructured Grids for Transient Problems; Int. J. Num. Meth. Fluids 14, 1407–1419 (1992). 13

    Article  MATH  Google Scholar 

  17. R. Löhner-Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids; J. Comp. Phys. 118, 380–387 (1995a). 9

    Article  Google Scholar 

  18. R. Löhner, C. Yang, J. Cebral, J. D. Baum, H. Luo, D. Pelessone and C. Charman-Fluid-Structure Interaction Using a Loose Coupling Algorithm and Adaptive Unstructured Grids; AIAA-95-2259 [Invited] (1995b). 9

    Google Scholar 

  19. R. Löhner and Chi Yang-Improved ALE Mesh Velocities for Moving Bodies; Comm. Num. Meth. Eng. 12, 599–608 (1996a). 7

    Article  MATH  Google Scholar 

  20. R. Löhner-Regridding Surface Triangulations; J. Comp. Phys. 126, 1–10 (1996b). 11

    Article  Google Scholar 

  21. R. Löhner-Extensions and Improvements of the Advancing Front Grid Generation Technique; Comm. Num. Meth. Eng. 12, 683–702 (1996c).

    Article  Google Scholar 

  22. R. Löhner-Renumbering Strategies for Unstructured-Grid Solvers Operating on Shared-Memory, Cache-Based Parallel Machines; Comp. Meth. Appl. Mech. Eng. 163, 95–109 (1998). 13

    Article  Google Scholar 

  23. R. Löhner, Chi Yang, J. D. Baum, H. Luo, D. Pelessone and C. Charman-The Numerical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies; Int. J. Num. Meth. Fluids 31, 113–120 (1999a). 5, 13

    Article  MATH  Google Scholar 

  24. R. Löhner, C. Yang, J. Cebral, J. D. Baum, H. Luo, E. Mestreau, D. Pelessone and C. Charman-Fluid-Structure Interaction Algorithms for Rupture and Topology Change; Proc. 1999 JSME Computational Mechanics Division Meeting, Matsuyama, Japan, November (1999b). 5

    Google Scholar 

  25. R. Löhner-A Parallel Advancing Front Grid Generation Scheme; AIAA-00-1005 (2000).

    Google Scholar 

  26. R. Löhner and M. Galle-Minimization of Indirect Addressing for Edge-Based Field Solvers; AIAA-02-0967 (2002). 13

    Google Scholar 

  27. N. Maman and C. Farhat-Matching Fluid and Structure Meshes for Aeroelastic Computations: A Parallel Approach; Computers and Structures 54, 4, 779–785 (1995). 9

    Article  Google Scholar 

  28. J. E. Melton, M. J. Berger and M. J. Aftosmis-3-D Applications of a Cartesian Grid Euler Method; AIAA-93-0853-CP (1993). 5

    Google Scholar 

  29. D. Pelessone and C.M. Charman-Adaptive Finite Element Procedure for Non-Linear Structural Analysis; 1995 ASME/JSME Pressure Vessels and Piping Conference, Honolulu, Hawaii, July (1995). 8

    Google Scholar 

  30. D. Pelessone and C.M. Charman-An Adaptive Finite Element Procedure for Structural Analysis of Solids; 1997 ASME Pressure Vessels and Piping Conference, Orlando, Florida, July (1997). 8

    Google Scholar 

  31. D. Pelessone and C.M. Charman-A General Formulation of a Contact Algorithm with Node/Face and Edge/Edge Contacts; 1998 ASME Pressure Vessels and Piping Conference, San Diego, California, July (1998). 8

    Google Scholar 

  32. R. B. Pember, J.B. Bell, P. Colella, W.Y. Crutchfield and M. L. Welcome-An Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Regionssl J. Comp. Phys. 120, 278 (1995). 5

    Article  MATH  MathSciNet  Google Scholar 

  33. J. J. Quirk-A Cartesian Grid Approach with Hierarchical Refinement for Compressible Flows; NASA CR-194938, ICASE Report No. 94-51, (1994). 5

    Google Scholar 

  34. R. Ramamurti and R. Löhner-Simulation of Flow Past Complex Geometries Using a Parallel Implicit Incompressible Flow Solver; pp. 1049,1050 in Proc. 11th AIAA CFD Conf., Orlando, FL, July (1993).

    Google Scholar 

  35. D. Sharov, H. Luo, J.D. Baum and R. Löhner-Time-Accurate Implicit ALE Algorithm for Shared-Memory Parallel Computers; First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10–14 (2000). 5

    Google Scholar 

  36. D. de Zeeuw and K. Powell-An Adaptively-Refined Cartesian Mesh Solver for the Euler Equations; AIAA-91-1542 (1991). 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löhner, R., Baum, J.D., Charman, C., Pelessone, D. (2003). Fluid-Structure Interaction Simulations Using Parallel Computers. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds) High Performance Computing for Computational Science — VECPAR 2002. VECPAR 2002. Lecture Notes in Computer Science, vol 2565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36569-9_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-36569-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00852-1

  • Online ISBN: 978-3-540-36569-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics