Skip to main content

Real-Time Camera Pose in a Room

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2626))

Included in the following conference series:

Abstract

Many applications of computer vision require camera pose in real-time. We present a new, fully mobile, purely vision-based tracking system that works indoors in a prepared room, using artificial landmarks. The main contributions of the paper are: improved pose accuracy by subpixel corner localization, high frame rates by CMOS image aquisition of small subwindows, and a novel sparse 3D model of the room for a spatial target representation and selection scheme which gains robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adnan Ansar and Kostas Daniilidis. Linear pose estimation from points or lines. In A. Heyden et al., editor, Proc. ECCV, volume 4, pages 282–296, Copenhagen, Denmark, May 2002. Springer LNCS 2353.

    Google Scholar 

  2. Mark Billinghurst, Hirokazu Kato, and Ivan Poupyrev. The MagicBook: a transitional AR interface. Computers and Graphics, 25:745–753, 2001.

    Article  Google Scholar 

  3. M. Brandner and A. Pinz. Real-time tracking of complex objects using dynamic interpretation tree. In Luc Van Gool, editor, Pattern Recognition, Proc. 24 th DAGM Symposium, Zurich, volume LNCS 2449 of Schriftenreihe, pages 9–16. Springer, 2002.

    Google Scholar 

  4. S.K. Feiner. Augmented reality: A new way of seeing. Scientific American, 4, 2002.

    Google Scholar 

  5. Vittorio Ferrari, Tinne Tuytelaars, and Luc Van Gool. Real-time affine region tracking and coplanar grouping. In Proc. CVPR, volume 2, pages 226–233, Kauai, Hawaii, USA, December 2001.

    Google Scholar 

  6. M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395, June 1981.

    Article  MathSciNet  Google Scholar 

  7. C. Harris and M. Stephens. A combined corner and edge detector. In Proc. of the 4 th Alvey Vision Conference, pages 189–192, Manchester, 1988.

    Google Scholar 

  8. B.K.P. Horn, H.M. Hilden, and S. Negahdaripour. Closed-form solution of absolute orientation using orthonormal matrices. J.Opt.Soc.Am.A, 5:1127–1135, 1988.

    Article  MathSciNet  Google Scholar 

  9. Dieter Koller, Gudrun Klinker, Eric Rose, David Breen, Ross Whitaker, and Mihran Tuceryan. Real-time vision-based camera tracking for augmented reality applications. In Proc. CVPR, 1997.

    Google Scholar 

  10. R. Laganière. Morphological corner detection. In Proc. ICCV, pages 280–285, Bombay, 1998.

    Google Scholar 

  11. C.P. Lu, G.D. Hager, and E. Mjolsness. Fast and globally convergent pose estimation from video images. IEEE Trans. PAMI, 22(6):610–622, June 2000.

    Google Scholar 

  12. L. Naimark and E. Foxlin. Circular data matrix fiducial system and robust image processing for a wearable vision-inertial self-tracker. In Proceedings ISMAR 2002, Darmstadt, pages 27–36. IEEE Comp Soc, 2002.

    Google Scholar 

  13. U. Neumann. STAR: Tracking for object-centric augmented reality. In W. Barfield and T. Caudell, editors, Fundamentals of Wearable Computers and Augmented Reality, chapter 10. Lawrence Erlbaum Associates, 2001.

    Google Scholar 

  14. U. Neumann, S. You, Y. Cho, J. Lee, and J. Park. Augmented reality tracking in natural environment. In International Symposium on Mixed Realities, Tokyo, Japan, 1999.

    Google Scholar 

  15. M. Ribo, H. Ganster, M. Brandner, P. Lang, Ch. Stock, and A. Pinz. Hybrid tracking for outdoor AR applications. IEEE Computer Graphics and Applications Magazine, 22(6):54–63, 2002.

    Article  Google Scholar 

  16. Kiyohide Satoh, Mahoro Anabuki, Hiroyuki Yamamoto, and Hideyuki Tamura. A hybrid registration method for outdoor augmented reality. In Proc. ISAR, pages 67–76, 2001.

    Google Scholar 

  17. C. Stock, U. Mühlmann, M. Chandraker, and A. Pinz. Subpixel corner detection for tracking applications using cmos camera technology. In 26th Workshop of the AAPR/ÖAGM, volume 160, pages 191–199, Graz, 2002. OCG Schriftenreihe.

    Google Scholar 

  18. S. You, U. Neumann, and R.T. Azuma. Hybrid inertial and vision traking for augmented reality registration. In IEEE Conference on Virtual Reality, pages 260–267, Houston, USA, March 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandraker, M.K., Stock, C., Pinz, A. (2003). Real-Time Camera Pose in a Room. In: Crowley, J.L., Piater, J.H., Vincze, M., Paletta, L. (eds) Computer Vision Systems. ICVS 2003. Lecture Notes in Computer Science, vol 2626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36592-3_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-36592-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00921-4

  • Online ISBN: 978-3-540-36592-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics