Skip to main content

Integration of Physiology and Fluid Dynamics

  • Chapter
  • First Online:
Process Integration in Biochemical Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 80))

Abstract

The purpose of strategies for the integration of fluid dynamics and physiology is the development of more reliable simulation tools to accelerate the process of scale-up. The rigorous mathematical modeling of the richly interactive relationship between the dynamic response of biosystems and the physical environment changing in time and space must rest on the link between coupled momentum, energy and mass balances and structured modeling of the biophase. With the exponential increase in massive computer capabilities hard- and software tools became available for simulation strategies based on such holistic integration approaches. The review discusses fundamental aspects of application of computational fluid dynamics (CFD) to three-dimensional, two-phase turbulence flow in stirred tank bioreactors. Examples of coupling momentum and material balance equations with simple unstructured kinetic models for the behavior of the biophase are used to illustrate the application of these strategies to the selection of suitable impeller configurations. The examples reviewed in this paper include distribution of carbon and energy source in fed batch cultures as well as dissolved oxygen fields during aerobic fermentations.

A more precise forecasting of the impact of the multitude of interactions must, however, rest upon a rigorous understanding of the response of the cell factory to the complex dynamic stimulation due to space- and time-dependent concentration fields.The paper also introduces some ideas for fast and very fast experimental observations of intracellular pool concentrations based on stimulus response methods. These observations finally lead to a more complex integration approach based on the coupling of CFD and structured metabolic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenne M, Reuss M (1999) Chem Eng Sci 54:3921

    Article  CAS  Google Scholar 

  2. Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press

    Google Scholar 

  3. Launder BE, Spalding DB (1974) Comp Meth Appl Mech Eng 3:269

    Article  Google Scholar 

  4. Kim JJ (1978) Three dimensional turbulent flow-field in a turbine stirred tank. PhD thesis, Louisiana State University

    Google Scholar 

  5. Pope SB (1978) AIAA J 16:279

    Article  Google Scholar 

  6. Hanjalick, Launder BE (1980) Trans ASME 102:34

    Google Scholar 

  7. Kline SJ, Cantwell BJ, Lilley GM (1981) The 1980-1981 HFOSR-HTMM-Stanford Conference on Complex Turbulent Flow, Stanford University, I, II, III

    Google Scholar 

  8. Roback R, Johnson BV (1983) NASA CR-168252

    Google Scholar 

  9. Chen YS, Kim SW (1987) NASA CR-179204

    Google Scholar 

  10. Patankar SV (1980) Numerical heat transfer and fluid flow. Mc Graw-Hill

    Google Scholar 

  11. Van’t Riet K, Smith JM (1975) Chem Eng Sci 30:1093

    Article  Google Scholar 

  12. Perng CY, Murthy JY (1993) AIChE Symp Ser 89:37

    Google Scholar 

  13. Takeda H, Narasaki K, Kitajima H, Sudoh S, Onofusa M, Iguchi S (1993) Comput Fluids 22:223

    Article  CAS  Google Scholar 

  14. Brucato A, Ciofalo M, Grisafi F, Micale G (1998) Chem Eng Sci 53:3653

    Article  CAS  Google Scholar 

  15. Placek J, Tavlarides LL (1985) AIChE J31:1113

    Article  CAS  Google Scholar 

  16. Gosman AD (1998) Trans I Chem Eng 76:153

    Article  CAS  Google Scholar 

  17. Issa RI, Gosman AD (1981) The computation of three-dimensional turbulent two phase flows in mixer vessels. In: Numerical methods in laminar and turbulent flow. Pineridge Press, Swansea, p 829

    Google Scholar 

  18. Trägardh C (1988) A hydrodynamic model for the simulation of an aerated agitated fed-batch fermentation. In: Bioreactor fluid dynamics. Elsevier, p 117

    Google Scholar 

  19. Politis S, Issa RI, Gosman AD, Lekakon C, Looney MK (1992) AIChE J 38:1946

    Article  Google Scholar 

  20. Morud K, Hjertager BH (1993) Computational fluid dynamics simulations of bioreactors. In: Mortensen U, Noorman H (eds) Bioreactor performance. IDEON, Lund, Sweden, p 47

    Google Scholar 

  21. Ishii M (1975) Thermo-fluid dynamic theory of two-phase-flow. Eyrolles

    Google Scholar 

  22. Ranade VV, van den Akker HEA (1994) Chem Eng Sci 49:5175

    Article  CAS  Google Scholar 

  23. Kuo JT, Wallis GB (1988) Int J Multiphase Flow 14:547

    Article  CAS  Google Scholar 

  24. Ishii M, Zuber N (1979) AIChE J 25:843

    Article  CAS  Google Scholar 

  25. Drew DA, Lahey TJ (1987) Int J Multiphase Flow 13:113

    Article  Google Scholar 

  26. Lopez de Bertodano M, Lahey TJ, Jones OCC (1994) Trans SME 116:128

    Google Scholar 

  27. Watanabe T, Hirano M, Tanabe F, Kamo H (1990) Nuclear Engng Design 120:181

    Article  CAS  Google Scholar 

  28. Huang B (1989) Modelisation numérique d’écoulements disphasiques à bulles dans des réacteurs chimiques. PhD thesis, Lyon

    Google Scholar 

  29. Kowe R, Hunt JCR, Hunt A, Couet B, Bradbury LJS (1988) Int J Multiphase Flow 14:587

    Article  CAS  Google Scholar 

  30. Lopez de Bertodano M. Lee SJ, Lahey RT, Drew DA (1990) ASME J Fluids Enging 112:107

    Article  Google Scholar 

  31. Svendsen HF, Jakobsen HA, Torvik R (1992) Chem Eng Sci 47:3297

    Article  CAS  Google Scholar 

  32. Johansen ST, Boysan F (1988) Metall Trans B 19B:755

    Article  CAS  Google Scholar 

  33. Lahey RT, Lopez de Bertodano M, Jones OC (1993) Nuclear Enging Des 141:177

    Article  CAS  Google Scholar 

  34. Sato Y, Adatomi M, Sekoguchi K (1981) Int J Multiphase Flow 7:167

    Article  Google Scholar 

  35. Rousar I, van den Akker HEA (1994) Proceedings of the 8th European conference on mixing, Cambridge, UK, p 89

    Google Scholar 

  36. Reuss M, Bajpai R (1991) Stirred tank models. In: Schügerl K (ed) Biotechnology, a multivolume comprehensive treatise, vol 4, measuring, modelling and control. VCH, Weinheim, p299

    Google Scholar 

  37. Joshi JB, Pandit AB, Sharma MM (1982) Chem Eng Sci 37:813

    Article  CAS  Google Scholar 

  38. Bombac A (1994) PhD thesis, University of Ljubljana

    Google Scholar 

  39. Bombac A, Zun I, Filipic B, Zumer M (1997) AIChE J 43:2921

    Article  CAS  Google Scholar 

  40. Hinze JO (1955) AIChE J 3:289

    Article  Google Scholar 

  41. Bakker A, van den Akker HEA (1994) Trans I Chem Eng 72:594

    CAS  Google Scholar 

  42. Greaves M, Barigou M (1988) Proceedings of the 6th European conference on mixing, Pavia, Italia, p 313

    Google Scholar 

  43. Jenne M (1999) Modellierung und Simulation der Strömungsverhältnisses in begasten Rührkesselreaktoren. PhD thesis, Universität Stuttgart

    Google Scholar 

  44. Reuss M, Schmalzriedt S, Jenne M (2000) In: Schügerl, Bellgardt (eds) Bioreaction engineering. Springer-Verlag (in press)

    Google Scholar 

  45. Bouafi M, Roustan M, Djebbar R (1997) Mixing IX, multiphase systems. Récents Progrès en génie des procédés 11(52):137

    Google Scholar 

  46. John AH, Bjalski W, Nienow AW (1997) Mixing IX, multiphase Systems. Récents Progrès en génie des procédés 11(52): 169

    CAS  Google Scholar 

  47. Nienow AW, Elson TP (1988) Chem Eng Res Des 66:5

    CAS  Google Scholar 

  48. Cooke M, Middleton JC, Bush JR (198) Proceedings of the 2nd international conference on bioreactor fluid dynamics, BHRA/Elsevier, p 37

    Google Scholar 

  49. Abradi V, Rovera G, Baldi G, Sicardi S, Conti R (1990) Trans I Chem E 68:516

    Google Scholar 

  50. Harvey PS, Greaves M (1982) Trans I Chem Eng 60:201

    CAS  Google Scholar 

  51. Friberg PC (1988) PhD Thesis, NTNU Trondheim, Norway

    Google Scholar 

  52. Noorman H (1993) Bioreactor performance on 30 m3 scale: verification of a scale-down/CFS approach. Technical report, Instituttet for Bioteknologi, Damarks Tekniske Hojskole, Lyngy, Denmark

    Google Scholar 

  53. Cui YQ, van der Lans RGJM, Noorman HJ, Luybenk ChAM (1996) Trans/Chem E 74:261

    CAS  Google Scholar 

  54. Voncken RM (1966) Circumlatie stromingen en menjing in geroerde vaten. PhD thesis, Delft University of Technology

    Google Scholar 

  55. Hoogendoorn CJ, Hartog AP (1967) Chem Eng Sci 22:1689

    Article  CAS  Google Scholar 

  56. Landau J, Prochazka J (1961) Coll Czechoslov Chem Commun 26:1976

    CAS  Google Scholar 

  57. Khang SJ, Levenspiel O (1976) Chem Eng Sci 31:569

    Article  CAS  Google Scholar 

  58. Tatterson GB (1991) Fluid mixing and gas dispersion in agitated tanks. McGraw Hill, New York

    Google Scholar 

  59. Groen DJ (1994) Macromixing in bioreactors. PhD thesis, Delft University of Technology

    Google Scholar 

  60. Bajpai R, Reuss M (1982) Can J Chem Eng 60:384

    CAS  Google Scholar 

  61. Kawase Y, Moo-Young M (1990) ChemEng I 43:B19

    CAS  Google Scholar 

  62. Van’t Riet K (1979) Ind Eng Chem Proc Des Dev 18:367

    Article  Google Scholar 

  63. Theobald U, Mailinger W, Reuss M (1998) Anal Biochem 214:31

    Article  Google Scholar 

  64. Rizzi M, Theobald U, Querfurth E, Rohrhirsch T, Baltes M, Reuss M (1996) Biotechnol Bioeng 49:316

    Article  CAS  Google Scholar 

  65. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) Biotechnol Bioeng 55:305

    Article  CAS  Google Scholar 

  66. Vaseghi S, Baumeister A, Rizzi M, Reuss M (1999) Metabolic Eng 1:128

    Article  CAS  Google Scholar 

  67. Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Anal Biochem 270:88

    Article  CAS  Google Scholar 

  68. Buziol S, Bashir I, Baumeister A, Claasen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) Biotechnol Bioeng 80:632

    Article  CAS  Google Scholar 

  69. Mailinger W, Baumeister A, Reuss M, Rizzi M (1998) J Biotechnol 63:155

    Article  CAS  Google Scholar 

  70. Rizzi M, Baltes M,Theobald U, Reuss M (1997) Biotechnol Bioeng 55:592

    Article  CAS  Google Scholar 

  71. Mauch K, Hieber SE, Reuss M (2000) Proceedings of the 4th international congress on biochemical engineering, Stuttgart, Fraunhofer IRB Verlag, ISBN 3-8167-5570-4:57

    Google Scholar 

  72. de Koning W, van Dam K (1992) Anal Biochem 204:118

    Article  Google Scholar 

  73. Liao JV, Hou S-Y, Chao Y-P (1996) Biotechnol Bioeng 52:129

    Article  CAS  Google Scholar 

  74. Schäfer K, Boos W, Takors R, Weuster-Botz D (1999) Anal Biochem 270:88

    Article  Google Scholar 

  75. Kaback H R (1969) Physiology 63:724

    CAS  Google Scholar 

  76. Larsson G, Törnkvist M, Stahl Wernersson E, Trägardh C, Noorman H, Enfors S-O (1996) BioprocEng 14:281

    Article  CAS  Google Scholar 

  77. Griot M (1987) Maßstabsvergrößerung von Bioreaktoren mit einer sauerstoffempfind-lichen Testkultur. PhD Thesis, ETH Zürich

    Google Scholar 

  78. Moes J (1985) Untersuchung von Mischphänomenen mit Hilfe von Bacillus subtilis. PhD Thesis, ETH Zürich

    Google Scholar 

  79. Moes J, Griot M, Keller J, Heinzle E, Dunn LJ, Bourne JR (1985) Biotechnol Bioeng 27:482

    Article  CAS  Google Scholar 

  80. Kossen NWF (1992) In: Vardar-Sukan F, Suha Sukan S (eds) Recent advances in biotechnology. NATO Asi series, Kluwer Academic Publisher, p 147

    Google Scholar 

  81. Cui YQ, van der Lans RGJM, Noorman HJ, Luyben KCAM (1996) Trans IChemE 74(A):261

    CAS  Google Scholar 

  82. Alves S, Vasconcelos JMT, Barata J (1997) Trans IChemE 75(A):334

    Article  CAS  Google Scholar 

  83. Vrabel P, van der Lans RGJM, Cui YQ, Luyben KCAM (1999) Trans IChemE 77(A4):291

    Article  CAS  Google Scholar 

  84. Chassagnole C, Noisommit-Rizzi N, Schmid J-W, Mauch K, Reuss M (2002) Biotechnol Bioeng 79:53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmalzriedt, S., Jenne, M., Mauch, K., Reuss, M. (2003). Integration of Physiology and Fluid Dynamics. In: von Stockar, U., et al. Process Integration in Biochemical Engineering. Advances in Biochemical Engineering/Biotechnology, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36782-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-36782-9_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43630-0

  • Online ISBN: 978-3-540-36782-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics