Skip to main content

Phonons and Thermal Properties of Carbon Nanotubes

  • Chapter
  • First Online:
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 80))

Abstract

The thermal properties of carbon nanotubes display a wide range of behaviors which are related both to their graphitic nature and their unique structure and size. The specific heat of individual nanotubes should be similar to that of two-dimensional graphene at high temperatures, with the effects of phonon quantization becoming apparent at lower temperatures. Inter-tube coupling in SWNT ropes, and interlayer coupling in MWNTs, should cause their low-temperature specific heat to resemble that of three-dimensional graphite. Experimental data on SWNTs show relatively weak inter-tube coupling, and are in good agreement with theoretical models. The specific heat of MWNTs has not been examined theoretically in detail. Experimental results on MWNTs show a temperature dependent specific heat which is consistent with weak inter-layer coupling, although different measurements show slightly different temperature dependences. The thermal conductivity of both SWNTs and MWNTs should reflect the on-tube phonon structure, regardless of tube-tube coupling. Measurements of the thermal conductivity of bulk samples show graphite-like behavior for MWNTs but quite different behavior for SWNTs, specifically a linear temperature dependence at low T which is consistent with one-dimensional phonons. The room-temperature thermal conductivity of highly aligned SWNT samples is over 200 W/mK, and the thermal conductivity of individual nanotubes is likely to be higher still.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. X. Benedict, S. G. Louie, M. L. Cohen, Solid State Commun. 100, 177–180 (1996)

    Article  CAS  Google Scholar 

  2. D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejón, Phys. Rev. B 59, 12678–12688 (1999)

    Article  CAS  Google Scholar 

  3. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  4. R. Saito, H. Kataura, chapter in this volume

    Google Scholar 

  5. C. Kittel, in Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1986)

    Google Scholar 

  6. A. Mizel, L. X. Benedict, M. L. Cohen, S. G. Louie, A. Zettl, N. K. Budra, W. P. Beyermann, Phys. Rev. B 60, 3264 (1999)

    Article  CAS  Google Scholar 

  7. R. Nicklow, N. Wakabayashi, H. G. Smith, Phys. Rev. B 5, 4951 (1972)

    Article  Google Scholar 

  8. W. DeSorbo, G. E. Nichols, J. Phys. Chem. Solids 6, 352(1958)

    Article  CAS  Google Scholar 

  9. M. G. Alexander, D. P. Goshorn, D. Guérard, P. Lagrange, M. El Makrini, D. G. Onn, Synth. Met. 2, 203 (1980)

    Article  CAS  Google Scholar 

  10. Neil W. Ashcroft, N. David Mermin, Solid State Physics (Harcourt Brace, New York1976)

    Google Scholar 

  11. J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, J. E. Fischer, Science 289, 1730 (2000)

    Article  CAS  Google Scholar 

  12. R. Al-Jishi, Lattice Dynamics of Graphite Intercalation Compounds, PhD thesis, Massachusetts Institute of Technology (1982)

    Google Scholar 

  13. W. Yi, L. Lu, Zhang Dian-lin, Z. W. Pan, S. S. Xie, Phys. Rev. B 59, R9015 (1999)

    Article  CAS  Google Scholar 

  14. G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th edn. (Longman, London 1995)

    Google Scholar 

  15. R. S. Ruoff, D. C. Lorents, Carbon 33, 925 (1995)

    Article  CAS  Google Scholar 

  16. D. T. Morelli, J. Heremans, M. Sakamoto, C. Uher, Phys. Rev. Lett. 57, 869 (1986)

    Article  CAS  Google Scholar 

  17. B. T. Kelly, in Physics of Graphite (Applied Science, London 1981)

    Google Scholar 

  18. J. Heremans, C. P. Beetz, Jr., Phys. Rev. B 32, 1981 (1985)

    Article  CAS  Google Scholar 

  19. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, R2514 (1999)

    Article  CAS  Google Scholar 

  20. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, Science 273, 483–487(1996)

    Article  CAS  Google Scholar 

  21. J. Hone, M. C. Llaguno, N. M. Nemes, A. J. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt, R. E. Snalley, Appl. Phys. Lett. 77, 666 (2000)

    Article  CAS  Google Scholar 

  22. R. E. Peierls, in Quantum Theory of Solids (Oxford Univ. Press, London 1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hone, J. (2001). Phonons and Thermal Properties of Carbon Nanotubes. In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 80. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-39947-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-39947-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41086-7

  • Online ISBN: 978-3-540-39947-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics