Skip to main content

An Abductive Mechanism for Natural Language Processing Based on Lambek Calculus

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1919))

Included in the following conference series:

  • 370 Accesses

Abstract

We present an abductive mechanism that works as a robust parser in realistic tasks of Natural Language Processing involving in- complete information in the lexicon, whether it lacks lexical items or the items are partially and/or wrongly tagged. The abductive mechanism is based on an algorithm for automated deduction in Lambek Calcu- lus for Categorial Grammar. Most relevant features, from the Artificial Intelligence point of view, lie in the ability for handling incomplete infor- mation input, and for increasing and reorganizing automatically lexical data from large scale corpora.

Partially supported by grant no. PB98-0590 oft he Comisión Interministerial de Ciencia y Tecnología. We would like to thank two anonymous referees for their valuable comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D. Inductive Inference of Formal Languges from Positive Data. Information and Control 45 (1980), 117–135.

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, Dana and Smith, Carl H. Inductive Inference: Theory and Methods. Computing Surveys 15 (1983), 237–269.

    Article  MathSciNet  Google Scholar 

  3. Bod, R. Beyond Grammar. An Experience-Based Theory of Language. CSLI Publications, 1998.

    Google Scholar 

  4. Buszkowski, W. Solvable Problems for Classical Categorial Grammars. Bulletin of the Polish Academy of Sciences: Mathematics 35, (1987) 507–516.

    Google Scholar 

  5. Buszkowski, W Discovery Procedures for Categorial Grammars. In E. Klein and J. van Benthem, eds.Polimorphisms and Unifications. University of Amsterdam, 1987.

    Google Scholar 

  6. Buszkowski, W. Mathematical linguistics and prooft heory. In Benthem and Meulen [VBTM97], pages 683–736.

    Google Scholar 

  7. Buszkowski, W. and Penn, G. Categorial Grammars Determined from Linguistics data by unification. Studia Logica 49, (1990) 431–454.

    Article  MATH  MathSciNet  Google Scholar 

  8. Gold, E. M. Language Identification in the Limit. Information and Control 10, (1967) 447–474.

    Article  MATH  Google Scholar 

  9. Hendriks, H. Studied Flexibility. Categories and Types in Sybtax and Semantics. PhD Thesis, University of A msterdam, 1993.

    Google Scholar 

  10. Hepple, M. The Grammar and Processing of Order and Dependency: a Categorical Approach. PhD. Thesis, University of Edinburgh, 1990

    Google Scholar 

  11. Hopcroft, John E. and Ullman, Jeffrey D. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  12. Kanazawa, M. Learnable Classes of Categorial Grammars. CSLI Publications, 1998.

    Google Scholar 

  13. König, E. Parsing as Natural Deduction. In Proceedings of the Annual Meeting of the Association for Computational Linguistics. Vancouver, 1989.

    Google Scholar 

  14. Lambek, J. The Mathematics of Sentence Structure. American Mathematical Monthly 65 (1958), 154–169.

    Article  MATH  MathSciNet  Google Scholar 

  15. Marciniec, J. Learning Categorial Grammars by Unification with negative constraints. Journal of Applications of Non-Classical Logics 4 (1994), 181–200.

    MATH  MathSciNet  Google Scholar 

  16. Menzel, W. Robust Processing of Natural Language. cmp-lg/9507003.

    Google Scholar 

  17. Moortgat, M. Unambiguous Proof Representation for the Lambek Calculus. In Proceedings of the Seventh Amsterdam Colloquium, 1990.

    Google Scholar 

  18. Moortgat, M. Categorial type logics. In Benthem and Meulen [VBTM97], pages 93–178.

    Google Scholar 

  19. Plotkin, G.D. Automatic Methods of Inductive Inference. PhD Thesis, Edimburgh University, August 1971.

    Google Scholar 

  20. Roorda, D. Resource Logics: Proof-theoretical Investigation. PhD Thesis, University of Amsterdam, 1991.

    Google Scholar 

  21. Stede, M. The search for robustness in natural language understanding. Artificial Intelligence Review, 6 (1992) 383–414

    Article  Google Scholar 

  22. van Benthem, J. and Ter Meulen, A., Editors. Handbook of Logic and Language. Elsevier Science B.V. and MIT Press, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delgado, A.F., Jimenez Millan, J.A. (2000). An Abductive Mechanism for Natural Language Processing Based on Lambek Calculus. In: Ojeda-Aciego, M., de Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds) Logics in Artificial Intelligence. JELIA 2000. Lecture Notes in Computer Science(), vol 1919. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40006-0_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-40006-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41131-4

  • Online ISBN: 978-3-540-40006-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics