Skip to main content

An Approximate Algorithm for the Weighted Hamiltonian Path Completion Problem on a Tree

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1969))

Included in the following conference series:

Abstract

Given a graph, the Hamiltonian path completion problem is to find an augmenting edge set such that the augmented graph has a Hamiltonian path. In this paper, we show that the Hamiltonian path completion problem will unlikely have any constant ratio approximation algorithm unless NP = P. This problem remains hard to approximate even when the given subgraph is a tree. Moreover, if the edge weights are restricted to be either 1 or 2, the Hamiltonian path completion problem on a tree is still NP-hard. Then it is shown that this problem will unlikely have any fully polynomial-time approximation scheme (FPTAS) unless NP=P. When the given tree is a k-tree, we give an approximation algorithm with performance ratio 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Arikati and C. Pandu Rangan. Linear algorithm for optimal path cover problem on interval graphs. Inf. Process. Lett., 35(3):149–153, 1990.

    Article  MATH  Google Scholar 

  2. S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. In Proc. 37th Annual IEEE Symposium on Foundations of Computer Science, pages 2–11. IEEE Computer Society, 1996.

    Google Scholar 

  3. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation. Springer-Verlag, Berlin Heidelberg, 1999.

    MATH  Google Scholar 

  4. B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM, 41(1):153–180, 1994.

    Article  MATH  Google Scholar 

  5. A. Blum, M. Li, J. Tromp, and M. Yannakakis. Linear approximation of shortest superstrings. Journal of the ACM, 41(4):630–647, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. T. Boesch, S. Chen, and J. A. M. McHugh. On covering the points of a graph with point disjoint paths. In Lecture Notes in Mathematics, volume 46, pages 201–212. Springer, Berlin, 1974.

    Google Scholar 

  7. M. A. Bonuccelli and D. P. Bovet. Minimum node disjoint path covering for circular-arc graphs. Inf. Process. Lett., 8:159–161, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Galbiati, F. Maffioli, and A. Morzenti. A short note on the approximability of the maximum leaves spanning tree problem. Inf. Process. Lett., 52:45–49, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

    MATH  Google Scholar 

  10. S. E. Goodman, S. T. Hedetniemi, and P. J. Slater. Advances on the Hamiltonian completion problem. Journal of the ACM, 22(3):352–360, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  11. O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subset problems. Journal of the ACM, 22(4):463–468, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Kundu. A linear algorithm for the Hamiltonian completion number of a tree. Inf. Process. Lett., 5:55–57, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  13. E. L. Lawler. Combinatorial Optimization: Networks and Matroids, chapter 6. Holt, Rinehart and Winston, New York, 1976.

    MATH  Google Scholar 

  14. J. Misra and R. E. Tarjan. Optimal chain partitions of trees. Inf. Process. Lett., 4:24–26, 1975.

    Article  MATH  Google Scholar 

  15. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. J. Comput. Syst. Sci., 43:425–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one and two. Mathematics of Operations Research, 18:1–11, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM, 23(3):555–565, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  18. Z. Skupien. Path partitions of vertices and Hamiltonicity of graphs. In Proc. 2nd Czechoslovakian Symp. on Graph Theory, pages 481–491, Prague, 1974.

    Google Scholar 

  19. R. Srikant, R. Sundaram, K. S. Singh, and C. P. Rangan. Optimal path cover problem on block graphs and bipartite permutation graphs. Theoretical Computer Science, 115(2):351–357, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.-K. Wong. Optimal path cover problem on block graphs. Theoretical Computer Science, 225(1-2):163–169, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  21. Q. S. Wu. On the Complexity and Approximability of Some Hamiltonian Path Problems. PhD Thesis, National Tsing Hua University, Taiwan, 2000.

    Google Scholar 

  22. J. H. Yan and G. J. Chang. The path-partition problem in block graphs. Inf. Process. Lett., 52:317–322, 1994.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Q.S., Lu, C.L., Lee, R.C.T. (2000). An Approximate Algorithm for the Weighted Hamiltonian Path Completion Problem on a Tree. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, SH. (eds) Algorithms and Computation. ISAAC 2000. Lecture Notes in Computer Science, vol 1969. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40996-3_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-40996-3_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41255-7

  • Online ISBN: 978-3-540-40996-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics