Skip to main content

Massively Parallel Pattern Recognition with Link Failures

  • Conference paper
  • First Online:
SOFSEM 2000: Theory and Practice of Informatics (SOFSEM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1963))

Abstract

The capabilities of reliable computations in linear cellular arrays with communication failures are investigated in terms of syntactical pattern recognition.

In particular we consider very fast, i. e. real-time, computations. It is wellknown that real-time one-way arrays are strictly less powerful than realtime two-way arrays. Here it is shown that the sets of patterns reliably recognizable by real-time arrays with link failures are strictly in between the sets of (intact) one-way and (intact) two-way arrays. Hence, the failures cannot be compensated in general but, on the other hand, do not decrease the computing power to that one of one-way arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bucher, W. and Čulik II, K. On real time and linear time cellular automata. RAIRO Inform. Théor. 18 (1984), 307–325. 396

    MATH  MathSciNet  Google Scholar 

  2. Buchholz, Th. and Kutrib, M. Some relations between massively parallel arrays. Parallel Comput. 23 (1997), 1643–1662. 396

    Article  MathSciNet  Google Scholar 

  3. Gács, P. Reliable computation with cellular automata. J. Comput. System Sci. 32 (1986), 15–78. 392

    Article  MATH  MathSciNet  Google Scholar 

  4. Gács, P. and Reif, J. A simple three-dimensional real-time reliable cellular array. J. Comput. System Sci. 36 (1988), 125-147. 392

    Google Scholar 

  5. Harao, M. and Noguchi, S. Fault tolerant cellular automata. J. Comput. System Sci. 11 (1975), 171–185. 393

    Article  MATH  MathSciNet  Google Scholar 

  6. Jiang, T. The synchronization of nonuniform networks of finite automata. Inform. Comput. 97 (1992), 234–261. 393

    Article  MATH  Google Scholar 

  7. Kutrib, M. Pushdown cellular automata. Theoret. Comput. Sci. 215 (1999), 239–261. 398

    Article  MATH  MathSciNet  Google Scholar 

  8. Kutrib, M. and Löwe, J.-T. Fault tolerant parallel pattern recognition. Cellular Automata for Research and Industry (ACRI 2000), 2000, to appear. 393

    Google Scholar 

  9. Kutrib, M. and Löwe, J.-T. Massively parallel pattern recognition with link failures. Research Report 0003, Institut für Informatik, Universität Giessen, Giessen, 2000. 397

    Google Scholar 

  10. Kutrib, M. and Vollmar, R. Minimal time synchronization in restricted defective cellular automata. J. Inform. Process. Cybern. EIK 27 (1991), 179–196. 393

    MATH  Google Scholar 

  11. Kutrib, M. and Vollmar, R. The firing squad synchronization problem in defective cellular automata. IEICE Transactions on Information and Systems E78-D (1995), 895–900. 393

    Google Scholar 

  12. Mazoyer, J. Synchronization of a line of finite automata with nonuniform delays. Research Report TR 94-49, Ecole Normale Supérieure de Lyon, Lyon, 1994. 393

    Google Scholar 

  13. Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata. Theoret. Comput. Sci. 217 (1999), 53–80. 396

    Article  MATH  MathSciNet  Google Scholar 

  14. Nishio, H. and Kobuchi, Y. Fault tolerant cellular spaces. J. Comput. System Sci. 11 (1975), 150–170. 393

    Article  MATH  MathSciNet  Google Scholar 

  15. Terrier, V. Language not recognizable in real time by one-way cellular automata. Theoret. Comput. Sci. 156 (1996), 281–287. 399, 400

    Article  MATH  MathSciNet  Google Scholar 

  16. Umeo, H. A fault-tolerant scheme for optimum-time firing squad synchronization. Parallel Computing: Trends and Applications, 1994, 223–230. 393, 395

    Google Scholar 

  17. von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies, Princeton University Press 34 (1956), 43–98. 392

    Google Scholar 

  18. Yunès, J.-B. Fault tolerant solutions to the firing squad synchronization problem. Technical Report LITP 96/06, Institut Blaise Pascal, Paris, 1996. 393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kutrib, M., Löwe, JT. (2000). Massively Parallel Pattern Recognition with Link Failures. In: Hlaváč, V., Jeffery, K.G., Wiedermann, J. (eds) SOFSEM 2000: Theory and Practice of Informatics. SOFSEM 2000. Lecture Notes in Computer Science, vol 1963. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44411-4_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-44411-4_28

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41348-6

  • Online ISBN: 978-3-540-44411-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics