Skip to main content

Integration of Biologically Inspired Temporal Mechanisms into a Cortical Framework for Sequence Processing

  • Chapter
  • First Online:
Sequence Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1828))

Abstract

Time is an important dimension in many real-world problems. This is particularly true for behavioral tasks where the temporal factor is critical. Consider for example the analysis of a perceptual scene or the organization of behavior in a planning task. Temporal problems are often solved using temporal techniques like Markovian Models or Dynamic Time Warping. Classical connectionist models are powerful for pattern matching tasks but exhibit some weaknesses in dealing with dynamic tasks involving the temporal dimension. Thus, they are efficient for off-line statistical data processing, but must be adapted for situated tasks which are intrinsically temporal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre, F. (1996). Connectionist cognitive processing for invariant pattern recognition. In Proceedings International Conference on Pattern Recognition.

    Google Scholar 

  • Ans, B., Coiton, Y., Gilhodes, J., and Velay, J. (1994). A neural network model for temporal sequence learning and motor programming. Neural Networks.

    Google Scholar 

  • Béroule, D. (1990). Guided propagation: current state of theory and application. In Soulié, F.F. and Hérault, J., editors, Neurocomputing. NATO ASI Serie. Springer Verlag Berlin Heidelberg.

    Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der grobhirnrinde. J. A. Barth, Leipzig.

    Google Scholar 

  • Burnod, Y. (1989). An adaptive neural network the cerebral cortex. Masson.

    Google Scholar 

  • Dehaene, S. and Changeux, J.-P. (1989). A simple model of prefrontal cortex function in delayed-response task. Journal of Cognitive Neuroscience, 1(3):244–261.

    Article  Google Scholar 

  • Dominey, P., Arbib, M., and Joseph, J.-P. (1995). A model of corticostriatal plasticity for learning oculomotor associations and sequences. Journal of Cognitive Neuroscience, 7(3):311–336.

    Article  Google Scholar 

  • Durand, S. and Alexandre, F. (1996). TOM, a new temporal neural network architecture for speech signal processing. In Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing, Atlanta.

    Google Scholar 

  • Elman, J.L. (1990). Finding structure in time. Cognitive Science, 14:179–211.

    Article  Google Scholar 

  • Frezza-Buet, H. (1999). Un modèle de cortex pour le comportement motivé d’un agent neuromimétique autonome. PhD thesis, Université Henri Poincaré Nancy I. In french.

    Google Scholar 

  • Frezza-Buet, H. and Alexandre, F. (1998a). Multimodal sequence learning with a cortically-inspired model. In JCIS98, Association for Intelligent Machinery, volume 2, pages 24–27.

    Google Scholar 

  • Frezza-Buet, H. and Alexandre, F. (1998b). Selection of action with a cortically-inspired model. In Seventh European Workshop on Learning Robots, pages 13–21.

    Google Scholar 

  • Frezza-Buet, H. and Alexandre, F. (1999). Specialization within cortical models: An application to causality learning. In Proceedings of the 7th European Symposium on Artificial Neural Networks.

    Google Scholar 

  • Gerstner, W. (1998). Spiking neurons. In Maass, W. and Bishop, C., editors, Pulsed Neural Networks. Bradford Book, MIT Press.

    Google Scholar 

  • Gove, A., Grossberg, S., and Mingolla, E. (1995). Brightness perception, illusory contours, and corticogeniculate feedback. Visual Neuroscience, 12:1027–1052.

    Article  Google Scholar 

  • Grossberg, S. (1984). Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes. Biological Psychiatry, 19(7):1075–1117.

    Google Scholar 

  • Grossberg, S., Mingolla, E., and Williamson, J. (1995). Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation. Neural Network, 8:1005–1028.

    Article  Google Scholar 

  • Grossberg, S. and Schmajuk, N.A. (1987). Neural dynamics of attentionally modulated pavlovian conditioning: Conditioned reinforcement, inhibition, and opponent processing. Psychobiology, 15(3):195–240.

    Google Scholar 

  • Grossberg, S. and Schmajuk, N.A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Network, 2:79–102.

    Article  Google Scholar 

  • Guigon, E. (1993). Modelisation des proprietes du cortex cerebral: Comparaison entre aires visuelles, motrices et préfrontales. PhD thesis, École centrale de Paris. in English.

    Google Scholar 

  • Hartwich, E. and Alexandre, F. (1997). A Speech Recognition System using an Auditory Model and TOM Neural Network. In Pearson, O.-W., Steele, N.-C., and Albrecht, R.-F., editors, Proceedings International Conference of Artificial Neural Nets and Genetic Algorithms, Norwich. Springer Verlag.

    Google Scholar 

  • Littman, M.L. (1996). Algorithms for Sequential Decision Making. PhD thesis, Department of Computer Science at Brown University.

    Google Scholar 

  • Maass, W. and Bishop, C., editors (1998). Pulsed Neural Networks. MIT Press.

    Google Scholar 

  • Pavlov, I.P. (1927). Conditioned Reflexes (V. Anrep, trans.). London: Oxford University Press”.

    Google Scholar 

  • Pearlmutter, B.A. (1990). Dynamic recurrent neural networks. Technical Report CMU-CS-90-196, Carnegie Mellon University.

    Google Scholar 

  • Reiss, M. and Taylor, J. (1991). Storing temporal sequences. Neural Networks, 4:773–787.

    Article  Google Scholar 

  • Rescorla, W.A. and Wagner, A.R. (1972). Classical conditioning II: Current research and theory, chapter A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. Black, A.H. and Prokasy, W.F., appleton-century-crofts edition.

    Google Scholar 

  • Skinner, B. (1938). The Behavior of Organisms.

    Google Scholar 

  • Suga, N. (1990). Cortical computational maps for auditory imaging. Neural Networks, 3:3–21.

    Article  Google Scholar 

  • Sun, R. and Alexandre, F., editors (1997). Connectionist — Symbolic Interpretation; from Unified to Hybrid Approaches. Lawrence Erlbaum Associates.

    Google Scholar 

  • Sutton, R.S. and Barto, A.G. (1981). Toward a modern theory of adaptative network: Expectation and prediction. Psychological Review, 88(2):135–170.

    Article  Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. (1989). Phoneme recognition using time delay neural networks. In IEEE Transactions on Acoustics Speech and Signal Processing, volume 37.

    Google Scholar 

  • Watkins, C.J. (1989). Learning from delayed rewards. PhD thesis, University of Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frezza-Buet, H., Rougier, N., Alexandre, F. (2000). Integration of Biologically Inspired Temporal Mechanisms into a Cortical Framework for Sequence Processing. In: Sun, R., Giles, C.L. (eds) Sequence Learning. Lecture Notes in Computer Science(), vol 1828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44565-X_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-44565-X_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41597-8

  • Online ISBN: 978-3-540-44565-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics