Skip to main content

From Reconfigurability to Evolution in Construction Systems: Spanning the Electronic, Microfluidic and Biomolecular Domains

  • Conference paper
  • First Online:
Field-Programmable Logic and Applications: The Roadmap to Reconfigurable Computing (FPL 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1896))

Included in the following conference series:

Abstract

This paper investigates configurability, reconfigurability and evolution of information processing hardware in conventional and unconventional media. Whereas current electronic systems have an advantage in terms of processing speed, they are at a definite disadvantage in terms of plasticity, true hardware reconfiguration and especially reconfiguration and evolution of the hardware construction system itself. Here molecular computers, including the control of chemical reaction synthesis, hold the promise of being able to achieve these properties. In particular, combinatorially complex families of molecules (such as DNA) can direct their own synthesis. The intermediate level of microfluidic systems is also open to reconfiguration and evolution and may play a vital role in linking up the electronic and molecular processing worlds. This paper discusses opportunities for and advantages of reconfiguration across these various levels and the possibility of integrating these technologies. Finally, the threshold level of construction control required for iterative bootstrapping of nanoscale construction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. XC6200-field programmable gate arrays data sheet, Xilinx 11–73

    Google Scholar 

  2. Thompson, A. “An evolved circuit intrinsic in silicon, entwined with physics” Lect. Not. Comp. Sci. 1259 (1996) 390–405

    Google Scholar 

  3. Tangen, U, McCaskill, J.S. Hardware evolution with a massively parallel dynamically reconfigurable computer: Polyp. In Sipper, M., Mange, D. and Perez-Uribe, A., eds., ICES’98 Evolvable Systems: From Biology to Hardware, volume 1478, Springer-Verlag Heidelberg (1998) 364–371

    Chapter  Google Scholar 

  4. Tangen, U. “Self-Organisation in Micro-Configurable Hardware” to be published in Bedau, M.A., McCaskill, J.S., Packard, N., Rasmussen, S. eds. “Artificial Life VII: Proceedings of the 7. International Conference” Aug. 2–7 2000

    Google Scholar 

  5. Paun, G., Rozenberg, G., Salomaa, A. “DNA Computing — new computing paradigms” Springer-Verlag (1998) Berlin Heidelberg

    Google Scholar 

  6. von Neumann, J. (1956) “Theory of Self-Reproducing Automata” Urbana: Burks, A.W. University of Illinois Press.

    Google Scholar 

  7. Lecture Notes in Computer Science ICES 98 Sipper, M., Mange, D., Perez-Uribe, A. eds. (1998) and ICES 96 Higuchi, T., Iwata, M., Liu, W. (eds.) (1996) Springer-Verlag Berlin

    Google Scholar 

  8. Sanchez, E., Tomassini, M. eds. “Towards Evolvable Hardware — The Evolutionary Engineering Approach” (1996) Springer-Verlag Heidelberg

    Google Scholar 

  9. McCaskill, J.S., Maeke, T., Gemm, U., Schulte, L. and Tangen, U. “NGEN: A massively parallel reconfigurable computer for biological Simulation: Towards a self-organizing computer” Lect. Not. Comp. Sci. 1259 (1996) 260–276

    Google Scholar 

  10. Kenis, P.J.A., Ismagilov, R.F., Whitesides, G.M. “Microfabrication inside capillaries using multiphase laminar flow patterning” Science 285 (1999) 83–85

    Article  Google Scholar 

  11. Harrison, D.J., Fluri, K., Fan, Z., Effenhauser, C.S., Manz, A. Science 261 (1993) 895

    Article  Google Scholar 

  12. Manz, A., Becker, H. “Microsystem Technology in chemistry and Life Science”, Topics in Current Chemistry, Vol. 194, Springer-Verlag, Heidelberg (1998)

    Google Scholar 

  13. Köhler, M in ”Etching in Microsystem Technology” Wiley-VCH (1999)

    Google Scholar 

  14. Peterson, K.E. Proc. IEEE 70 (1982) 420

    Article  Google Scholar 

  15. Muller, R.S. Sensors and Actuators A21 (1990) 1

    Google Scholar 

  16. Dietrich, T.R., Abraham, M., Diebel, J., Lacher, M., Ruf, A. J. Micromech. Microeng. 3 (1993) 187

    Article  Google Scholar 

  17. Quin, D, Xia, Y., Whitesides, G.M. “Rapid prototyping of complex structures with feature sizes larger than 20 μm Adv. Mat. 8 (1996) 917–919

    Article  Google Scholar 

  18. Schuenemann, Bauer, G., Schaefer, W., Leutenbauer, Grosser, V., Reichl, H. Modularization of Microsystems and Standardization of Interfaces In Reichl, H., Obermeier, E. eds., Micro System Technologies 98 6th International conference on micro-, electro-, opto-Mechanical Systems an Components, VDE-Verlag GMbH Berlin (1998) 141–146

    Google Scholar 

  19. Ikuta, K., Hirowatari, K., Ogata, T. “Three Dimensional Micro Integrated Fluid System (MIFS) fabricated by stereo lithography” Proc. of. IEEE International Workshop on Micro Electro Mechanical Systems (MEMS’94) (1994) 1–9

    Google Scholar 

  20. Ikuta, K., Hirowatari, K. “Real three dimensional micro fabrication unsing stereo lithography and metal molding” Proc. of. IEEE International Workshop on Micro Electro Mechanical Systems (MEMS’93) (1993) 42–47

    Google Scholar 

  21. Ikuta, K., Maruo, S., Fukaya, Y and Fujisawa, T. “Biochemical IC chip toward cell free DNA protein synthesis” Proc. of. IEEE International Workshop on Micro Electro Mechanical Systems (MEMS’98) (1998) 131–136

    Google Scholar 

  22. Cerrina, F., Yue, Y. http://www.xraylith.wisc.edu/dna_chips/index.html

  23. Bräutigam, R., Steen, D., Ehricht, McCaskill, J.S. Isothermal Biochemical Amplification in Miniaturized Reactors with integrated Micro Valves, Microreaction Technology, Proceedings of the third International Conference on Microreaction Technology, Frankfurt a.M., (1999) Springer-Verlag, Berlin

    Google Scholar 

  24. McCaskill, J.S. Schmidt, K. Patent PCT/EP98/03942 “Switchable dynamic micromixer with minimum dead volume” WO 99/01209

    Google Scholar 

  25. McCaskill, J.S. “Optically Programming DNA Computing in Microflow Reactors” Preprint GMD — German National Research Center for Information Technology Schloss Birlinghoven, St. Augustin March 2000

    Google Scholar 

  26. Asbury, C.L., van den Engh, G. “Trapping of DNA in non-uniform oscillating electric fields.” Biophys. J. 1 (1998) 1024–1030

    Article  Google Scholar 

  27. Manz, A. “The secret behind electrophoresis microstructure design” in Widmer, E., Verpoorte, Banard, S. eds. Proceedings of the 2nd International Symposium on μTAS (1996) pp. 28–30, Basel

    Google Scholar 

  28. Beebe, D.J., Moore, J.S, Bauer, J.M., Yu, Q., Liu, R.H., Devadoss, C., Jo, B.-H. Nature 404 (2000) 588–590

    Article  Google Scholar 

  29. Schueller, J.A., Duffy, D.C., Rogers, J.A., Brittain, S.T., Whitesides, G.M. “Reconfigurable diffraction gratings based on elastomeric microfluidic devices” Sens. Actuators 78 (1998) 149–159

    Article  Google Scholar 

  30. Kitano, H. “Morphogenesis for Evolvable Systems” In Sanchez, E., Tomassini, M. eds. “Towards Evolvable Hardware — The Evolutionary Engineering Approach” (1996) Springer-Verlag Heidelberg pp. 99–117.

    Google Scholar 

  31. Adleman, L.M. “Molecular computation of solutions to combinatorial problems” Science 266 (1994) 1021–1024

    Article  Google Scholar 

  32. Web address: http://www.cordis.lu/fp5/home.html

  33. Landweber, L. F., Kuo, T.-C., Curtis, E.. Evolution and Assembly of an Extremely Scrambled Gene, Proc. Natl. Acad. Sci. (2000).

    Google Scholar 

  34. “DNA VI-Sixth International Meeting in DNA Based Computers” Conference Proceedings Condon, A., Rozenberg, G. eds. June 13–17 (2000) Leiden Center for Natural Computing

    Google Scholar 

  35. McCaskill, J.S. “Spatially Resolved in vitro Molecular Ecology” Biophysical Chemistry 66 (1997) 145–158

    Article  Google Scholar 

  36. Wright, M. C., Joyce, G.F. “Continuous in vitro evolution of catalytic function.” Science 276(5312) (1997) 614–617

    Article  Google Scholar 

  37. Wlotzka, McCaskill, J.S. “A molecular predator and its prey: Coupled isothermal amplification of nucleic acids” Chemistry and Biology Vol. 4, No. 1 (1997) 25–33

    Article  Google Scholar 

  38. Ehricht, R., Ellinger, T., McCaskill, J.S. “Cooperative amplification of templates by cross hybridisation (CATCH)” European Journal of Biochemistry 243 (1997) 358–364

    Article  Google Scholar 

  39. Luther, A., Brandsch, R., von Kiedrowski, G. “Surface-promoted replication and exponential amplification of DNA analogues.” Nature 396 (1998) 245–248

    Article  Google Scholar 

  40. Alimov, A.P., Khmelnitsky, A.Yu, Simonenko, PN, Spirin AS, Chetverin AB “Cell-free synthesis and affinity isolation of proteins on a nanomole scale.” Biotechniques 28(2) (2000) 338–344

    Google Scholar 

  41. Doudna, J. A., Usman, N. et al. “Ribozyme-catalyzed primer extension by trinucleotides: a model for the RNA-catalyzed replication of RNA.” Biochemistry 32(8) (1993) 2111–2115

    Article  Google Scholar 

  42. McCaskill, J.S. Abschlussbericht BMBF Teilprojekt “In-vitro Evolution in Mikroreaktoren und Geräteentwicklungen” (1999) FKZ 0310799

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McCaskill, J.S., Wagler, P. (2000). From Reconfigurability to Evolution in Construction Systems: Spanning the Electronic, Microfluidic and Biomolecular Domains. In: Hartenstein, R.W., Grünbacher, H. (eds) Field-Programmable Logic and Applications: The Roadmap to Reconfigurable Computing. FPL 2000. Lecture Notes in Computer Science, vol 1896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44614-1_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-44614-1_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67899-1

  • Online ISBN: 978-3-540-44614-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics