Skip to main content

Analysis of RNS-FPL Synergy for High Throughput DSP Applications: Discrete Wavelet Transform

  • Conference paper
  • First Online:
Field-Programmable Logic and Applications: The Roadmap to Reconfigurable Computing (FPL 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1896))

Included in the following conference series:

Abstract

This paper focuses on the implementation over FPL devices of high throughput DSP applications taking advantage of RNS arithmetic. The synergy between the RNS and modern FPGA device families, providing built-in tables and fast carry and cascade chains, makes it possible to accelerate MAC intensive real-time and DSP systems. In this way, a slow high dynamic range binary 2’s complement system can be partitioned into various parallel and high throughput small word-length RNS channels without inter-channel carry dependencies. To illustrate the design methodology, novel RNS-based architectures for multi-octave orthogonal DWT and its inverse are implemented using structural level VHDL synthesis. Area analysis and performance simulation are conducted. A relevant throughput improvement for the proposed RNS-based solution is obtained, compared to the equivalent 2’s complement implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Soderstrand, W. Jenkins, G. A. Jullien, and F. J. Taylor, Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press Reprint Series. IEEE Press, 1986.

    Google Scholar 

  2. N. Szabo and R. Tanaka, Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill, 1967.

    Google Scholar 

  3. A. García, U. Meyer-Bäse, A. Lloris and F. J. Taylor, “RNS Implementation of FIR Filters Based on Distributed Arithmetic using Field-Programmable Logic”, Proc. IEEE Int. Symp. on Circuits and Systems, Orlando, FL, vol. 1, pp. 486–489, Jun. 1999.

    Google Scholar 

  4. J. Ramírez, A. García, P. G. Fernández, L. Parrilla and A. Lloris, “A New Architecture to Compute the Discrete Cosine Transform Using the Quadratic Residue Number System,” Proc. of 2000 IEEE Int. Symp. on Circuits and Systems, Geneva, 2000, vol. 5, pp. 321–324.

    Google Scholar 

  5. Altera Corporation, 1998 Data Book, Jan. 1998.

    Google Scholar 

  6. Xilinx Inc., The Programmable Logic Data Book, 1999.

    Google Scholar 

  7. Actel Corporation, ProASIC 500K Family Data Sheet, 2000.

    Google Scholar 

  8. M. A. Bayoumi, G. A. Jullien and W. C. Miller, “A VLSI Implementation of Residue Adders.” IEEE Trans. on Circuits and systems, vol. 34, no. 3, pp. 284–288, Mar. 87.

    Google Scholar 

  9. G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesly-Cambridge Press, 1997.

    Google Scholar 

  10. M. Vetterli, J. Kovacevik, Wavelets and Subband Coding, Prentice Hall, 1995

    Google Scholar 

  11. C. Chakrabarti, C. Mumford, “Efficient Realizations of Encoders and Decoders Based on the 2-D Discrete Wavelet Transform,” IEEE Trans. VLSI Syst., vol. 2, no. 3, Sep. 1999.

    Google Scholar 

  12. M. Vishwanath, M. Owens, M. J. Irwin, “VLSI Architectures for the Discrete Wavelet Transform,” IEEE Trans. Circuits Syst. II, vol. 42, no. 5, May 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramírez, J., García, A., Fernández, P.G., Parrilla, L., Lloris, A. (2000). Analysis of RNS-FPL Synergy for High Throughput DSP Applications: Discrete Wavelet Transform. In: Hartenstein, R.W., Grünbacher, H. (eds) Field-Programmable Logic and Applications: The Roadmap to Reconfigurable Computing. FPL 2000. Lecture Notes in Computer Science, vol 1896. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44614-1_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-44614-1_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67899-1

  • Online ISBN: 978-3-540-44614-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics