Skip to main content

Designing PTASs for MIN-SUM Scheduling Problems

Short Version

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2138))

Included in the following conference series:

Abstract

We review approximability and inapproximability results for MIN-SUM scheduling problems and we focus on two main techniques for designing polynomial time approximation schemes for this class of problems: ratio partitioning and time partitioning. For both techniques we present examples which illustrate their efficient use.

This work has been partially supported by European Commission, Project APPOL-IST-1999-14084

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein, M. Sviridenko: Approximation schemes for minimizing average weighted completion time with release dates. In Proceedings of 40th FOCS (1999) 32–43.

    Google Scholar 

  2. F. Afrati, E. Bampis, A. V. Fishkin, K. Jansen, C. Kenyon: Scheduling to minimize the average completion time of dedicated tasks. In Proceedings of 20th FSTTCS (2000) 454–464.

    Google Scholar 

  3. F. Afrati, E. Bampis, C. Kenyon, I. Milis: Scheduling to minimize the weighted sum of completion times. Journal of Scheduling 3 (2000) 323–332.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Alon, Y. Azar, G. J. Woeginger, T. Yadid: Approximation schemes for scheduling on parallel machines. Journal of Scheduling 1 (1998) 55–66.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Bruker: Scheduling Algorithms. Springer, 1998. See also http://www.mathematik.uni-osnabrueck.de/research/OR/class/

  6. X. Cai, C. Y. Lee, C. L. Li: Minimizing total completion time in two-processor task systems with prespecified processor allocations. Naval Research Logistics, 45 (1998) 231–242.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Chekuri, R. Motwani: Minimizing weigthed completion time on a single machine. In Proceedings of 10th SODA (1999) 873–874.

    Google Scholar 

  8. C. Chekuri, R. Motwani, B. Natarajan, C. Stein: Approximation techniques for average completion time scheduling. In Proceedings of 8th SODA (1997) 609–618.

    Google Scholar 

  9. M. E. Dyer, L. A. Wosley: Formulating the single machine sequencing problem with release dates as a mixed integer program. Discrete Applied Math. 26 (1990) 255–270.

    Article  MATH  Google Scholar 

  10. A. V. Fishkin, K. Jansen, L. Porkolab: On minimizing average weigthed time completion time of multiprocessor tasks with release dates. Submitted, 2001.

    Google Scholar 

  11. M. X. Goemans, M. Queyranne, A. S. Shulz, M. Skutella, Y. Wang: Single machine scheduling with release dates. Submitted, 1999 (see http://www.math.tu-berlin.de/~skutella/publications.html).

  12. R.L. Graham: Bounds on certain multiprocessor anomalies. Bell Systems Tech. J. 45 (1996) 1563–1581.

    Google Scholar 

  13. R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan: Optimization and approximation in deterministic sequencing and scheduling. Ann. Discrete Math. 5 (1979) 287–326.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. A. Hall, A. S. Schulz, D. B. Shmoys, J. Wein: Scheduling to minimize average completion time: on-line and off-line approximation algorithms. Mathematics of Operations Research 22 (1997) 513–544.

    Article  MATH  MathSciNet  Google Scholar 

  15. L.A. Hall, D.B. Shmoys, J. Wein: Scheduling to minimize average completion time: on-line and off-line algorithms. In Proceedings of 7th SODA (1996) 142–151.

    Google Scholar 

  16. H. Hoogeveen, P. Schuurman, G.J. Woeginger: Non-approximability results for scheduling problems with minsum criteria. In Proceedings of 6th IPCO, LNCS 1412 (1998) 353–366.

    Google Scholar 

  17. T. Kawaguchi, S. Kyan: Worst case bound of an LRF schedule for the mean weighted flow-time problem. SIAM J. on Computing 15 (1986) 1119–1129.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Kellerer, T. Tautenhahnm, G. J. Woeginger: Approximability and nonappprox-imability results for minimizing total flow time on a single machine. In Proceedings of 28th STOC (1996) 418–426.

    Google Scholar 

  19. Leonardi, D. Raz: Approximating total flow time on parallel machines. In Proceedings of 29th STOC (1997) 110–119.

    Google Scholar 

  20. J. Y. T. Leung, W. D. Wei: Tighter bounds on a heuristic for a partition problem. Information Processing Letters 56 (1995) 51–57.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Munier, M. Queyranne, A. S. Schulz: Approximation bounds for a general class of precedence-constrained parallel machine scheduling problems. In Proceedings of 6th IPCO, LNCS 1412 (1998) 367–382.

    Google Scholar 

  22. C. Philips, C. Stein, J. Wein: Scheduling job that arrive over time. In Proceedings of 4th WADS, LNCS 955 (1995) 290–301.

    Google Scholar 

  23. C.N. Potts: An algorithm for the single machine sequencing problem with precedence constraints. Math. Programming Stud. 13 (1980) 78–87.

    MATH  MathSciNet  Google Scholar 

  24. M. Queyranne: Structure of a simple scheduling polyhedron. Math. Programming 58 (1993) 263–285.

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Queyranne, A. S. Shulz: Polyhedral approaches to machine scheduling. Preprint No. 408/1994, Department of Mathematics, Technical University Berlin, 1994.

    Google Scholar 

  26. R. Ravi, A. Agrawal, P. Klein: Ordering problems approximated: single processor scheduling and interval graph completion. In Proceedings of 18th ICALP, LNCS 510 (1991) 751–762.

    Google Scholar 

  27. S. Sahni: Algorithms for scheduling independent tasks. J. ACM 23 (1976) 116–127.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. W. P. Savelsbergh, R. N. Uma, J. M. Wein: An experimental study of LP-based approximation algorithms for scheduling problems. In Proceedings of 9th SODA (1998) 453–462.

    Google Scholar 

  29. A.S. Schulz, M. Skutella: Random-based scheduling: New approximations and LP lower bounds. In Proceedings of RANDOM’97, LNCS 1269 (1997) 119–133.

    Google Scholar 

  30. A.S. Schulz, M. Skutella: Scheduling-LPs bear probabilities: Randomized approximations for min-sum criteria. In Proceedings of 5th ESA, LNCS 1284 (1997) 416–429.

    Google Scholar 

  31. A.S. Schulz, M. Skutella: The power of alpha-points in preemptive single machine scheduling. Submitted, 1999 (see http://www.math.tu-berlin.de/~skutella/publications.html).

  32. P. Schuurman, G.J. Woeginger: Polynomial time algorithms for machine scheduling: Ten open problems. Manuscript, 1999.

    Google Scholar 

  33. J. Sethuraman, M. S. Squillante: Optimal scheduling of multiclass parallel machines. In Proceedings of 10th SODA (1999) 963–964.

    Google Scholar 

  34. D. B. Shmoys: Using linear programming in the design and analysis of approximation algorithms: Two illustrative problems. In Proceedings of APPROX’98, LNCS 1444 (1998) 15–32.

    Google Scholar 

  35. M. Skutella: Semidefinite relaxations for parallel machine scheduling. In Proceedings of 39th FOCS (1998) 472–481.

    Google Scholar 

  36. M. Skutella: Convex quadratic programming relaxations for network scheduling problems. In Proceedings of 7th ESA, LNCS 1643 (1999) 127–138.

    Google Scholar 

  37. M. Skutella, G.J. Woeginger: A PTAS for minimizing the weigthed sum of job completion times on parallel machines. In Proceedings of 31th STOC (1999) 400–407.

    Google Scholar 

  38. W. Smith: Various optimizers for single-stage production. Naval Res. Logist. Quart. 3(1956) 59–66.

    Article  MathSciNet  Google Scholar 

  39. E. Torng and P. Uthaisombut: Lower bounds for srpt-subsequence algorithms for nonpreemptive scheduling. In Proceedings of the 10th SODA (1999) 973–974.

    Google Scholar 

  40. J. Turek, W. Ludwing, J. Wolf, P. Yu: Scheduling parallel tasks to minimize average responce times. In Proceedings of 5th SODA (1994) 112–121.

    Google Scholar 

  41. G.J. Woeginger: When does a dynamic programming formulation guarantee the existence of an FPTAS? In Proceedings of 10th SODA (1999) 820–829.

    Google Scholar 

  42. L. A. Wosley: Mixed integer programming formulations for production planning and scheduling problems. Invited talk at 12th International Symposium on Mathematical Programming, MIT, Cambriddge, 1985.

    Google Scholar 

  43. R. N. Uma and J. Wein: On the relationship between combinatorial and lp-based approaches to NP-hard scheduling problems. In Proceedings of the 7th IPCO (1999) 394–408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Afrati, F., Milis, I. (2001). Designing PTASs for MIN-SUM Scheduling Problems. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_50

Download citation

  • DOI: https://doi.org/10.1007/3-540-44669-9_50

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42487-1

  • Online ISBN: 978-3-540-44669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics