Skip to main content

Integrated Architectures for Machine Learning

  • Chapter
  • First Online:
Machine Learning and Its Applications (ACAI 1999)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2049))

Included in the following conference series:

Abstract

With the growing complexity of Machine Learning applications, the need for using integrated or hybrid (or multistrategy) approaches becomes more and more imperative, and an increasing amount of research effort is devoted to this issue. The increasing complexity of applications is not the only reason making multistrategic approaches appealing: as it is well known, no single approach/system can claim to be uniformly superior to any other, so that hybridisation seems a natural and viable way of compensating drawbacks and enhancing advantages. Even though there is no common agreement on what integration exactly means in Machine Learning, in a broad sense an integrated architecture can be defined as one which is organised or structured so that its constituent units function co-operatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anglano C., Giordana A., Lo Bello G. and Saitta L. (1998). “An Experimental Evaluation of Coevolutive Concept Learning”. In Proeedings of the 5th International Conference in Machine Learning (Madison, WS), Morgan Kaufman, pp. 19–27.

    Google Scholar 

  2. Altmann E. (1993). “Learning Scope, Task Analysis and Sharable Components”. In Proc. 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 50–57.

    Google Scholar 

  3. Baroglio C., Giordana A., Kaiser. M., Nuttin M., Piola R. (1996): “Learning Controllers for Industrial Robots”. Machine Learning, 23, 221–250.

    Google Scholar 

  4. Bergadano F. and Giordana A. (1988). “A knowledge intensive approach to concept induction”. In Proceedings of 5th International Conference in Machine Learning (Ann Harbor, MI), Morgan Kaufman pp. 317–350.

    Google Scholar 

  5. Bergen D.E. and Bock P. (1998). “Applying Collective Learning Systems Theory to Reactive Actor Design and Control”. In Proc. of the 4th Int. Workshop on Multistrategy Learning (Desenzano del Garda, Italy), pp. 38–46.

    Google Scholar 

  6. Bloedorn E., Michalski R.S., & Wnek J. (1993). “Multistrategy Constructive Induction: AQ17-MCI”. In Proc. of the 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 188–203.

    Google Scholar 

  7. Botta M. and Giordana A. (1993). “Smart+: a Multi Strategy Learning Tool”. In Proc. 13th Int. Joint Conference on Artificial Intelligence (Chambéry, France), pp. 937–943.

    Google Scholar 

  8. Botta M., Giordana A. and Piola R. (1997). “FONN: Combining First Order Logic with Connectionist Learning”. In Proceedings of the 14th International Conferenceon Machine Learning (Nashville, USA), Morgan Kaufmann, pp. 48–56.

    Google Scholar 

  9. Botta M. and Piola R. (2000). “Refining Numerical Concepts in First Order Logic Theories”. Machine Learning, 38:1-2, 109–131.

    Article  MATH  Google Scholar 

  10. Breiman L. (1996). “Bagging predictors”. Machine Learning, 24, 123–140.

    MATH  MathSciNet  Google Scholar 

  11. Burns B.D. and Danyluk A.P. (2000). “Feature Selection vs. Theory Reformulation: A Study of Genetic Refinement of Knowledge-Based Neural Networks”. Machine Learning, 38:1-2, 89–107.

    Article  MATH  Google Scholar 

  12. Chan P.K. and Stolfo S.J. (1993). “Meta-Learning for Multistrategy and Parallel Learning”. In Proc. of the 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 150–165.

    Google Scholar 

  13. Console L. and Saitta L. (1999). “On the relations between Abduction and Inductive Explanations”. In P. Flach and A. Kakas (Eds.), Abduction and Induction:Essays on their Relation and Integration, Applied Logic Series, Vol. 18, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  14. Craven M. and Shavlik J (1995). “Investigating the Value of a Good Input Representation”. In T. Petsche, S. Judd & S. Hanson (Eds.), Computational Learning Theory and Natural Learning Systems, Vol. 3, MIT Press, Cambridge, MA, pp.102–127.

    Google Scholar 

  15. Craw S., Sleeman D., Graner N., Rissakis M and Sharma S. (1992). “CONSULTANT: Providing Advice for the Machine Learning Toolbox”. In M. Bramer (Ed.), Proc. of the BCS Expert Systems Conference, Cambridge Univ. Press, Cambridge, UK, pp 5–23.

    Google Scholar 

  16. DeJong G., Mooney R. (1986). “Explanation-based learning: An alternative view”. Machine Learning, 1, 145–176.

    Google Scholar 

  17. De Jong K. A., Spears W. M. and Gordon F. D. (1993). “Using Genetic Algorithms for Concept Learning”, Machine Learning, 13, 161–188.

    Article  Google Scholar 

  18. De Raedt L. and Bruynooghe M. (1991): “CLINT: A Multistrategy Interactive Concept-Learner and Theory Revision System”. In Proc. of the First Multistrategy Learning Workshop (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 175–190.

    Google Scholar 

  19. Drobnic M. and Gams M. (1993). “Multistrategy Learning: An Analytical Approach”. In Proc. of the 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 31–41.

    Google Scholar 

  20. Esposito F., Semeraro G., Fanizzi N. and Ferilli S. (2000). “Multistrategy Theory Revision: Induction and Abduction in INTHELEX”. Machine Learning, 38:1-2, 133–156.

    Article  MATH  Google Scholar 

  21. Fayyad, U. (1996). “Data mining & knowledge discovery: Making sense out of data”. IEEE Expert, 11(5), 20–25.

    Article  Google Scholar 

  22. Freund Y. and Schapire R. E. (1996). “Experiments with a New Boosting Algorithm”. In Proceedings of the 13 th International Conference in Machine Learning (Bari, Italy), San Francisco: Morgan Kaufmann, pp. 149–156.

    Google Scholar 

  23. Giordana A. and Sale C. (1992). “Genetic Algorithms for Learning Relations”. In Proceedings. 9 th International Conference in Machine Learning (Aberdeen, UK), San Francisco: Morgan Kaufmann, pp. 169–178.

    Google Scholar 

  24. Giordana A. and Neri F. (1995). “Search Intensive Concept Induction”. Evolutionary Computation, 3, 375–416.

    Article  Google Scholar 

  25. Giordana A., Neri F., Saitta L. and Botta M. (1997). “Integrating Multiple Learning Straegies in First Order Logics”. Machine Learning, 27, 209–240.

    Article  MATH  Google Scholar 

  26. Graner M. and Sleeman D. (1993). “MUSKRAT: A Multistrategy Knowledge Refinement and Acquisition Toolbox”. In Proc. 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 107–119.

    Google Scholar 

  27. Heath D., Kasif S. and Salzberg S. (1993). “k-DT: A Multi-Tree Learning Method”. In Proc. of the 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 138–149.

    Google Scholar 

  28. Hekanaho J., Sere K., Back B. and Laitinen T. (1998). “Analysing Bankruptcy Data with Multiple Methods”. In Proc. 4th International Workshop on Multistrategy Learning (Desenzano del Garda, Italy), pp. 75–81.

    Google Scholar 

  29. Hsu W.H., Gettings N.D., Lease V.E., Pan Y. and Wilkins D.C. (1998). “Heterogeneous Time Series Learning for Crisis Monitoring“. In Proc. 4th International Workshop on Multistrategy Learning (Desenzano del Garda, Italy), pp.82–89.

    Google Scholar 

  30. Hunter L. (1991). “Classifying for Prediction: A Multistrategy Approach to Predicting Protein Structure”. In Proc. of the 1st Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 394–402.

    Google Scholar 

  31. Janikow C. Z. (1993). “A Knowledge Intensive Genetic Algorithm for Supervised Learning”. Machine Learning, 13, 198–228.

    Google Scholar 

  32. Kodratoff Y. (1991): “Induction and the Organization of Knowledge”. In Proceedings of the First Multistrategy Learning Workshop (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 34–48.

    Google Scholar 

  33. Kodratoff, Y., Sleeman, D., Uszynski, M., Causse, K. and Craw, S. (1992). “Building a Machine Learning Toolbox”. In L. Steels and B. Lepape (Eds.), Enhancing the Knowledge-Engineering Process-Contributions from Esprit, Elsevier Publ. Co., pp. 81–108.

    Google Scholar 

  34. Lamma E., Pereira L.M. and Riguzzi F. (2000). “Strategies in Combined Learning via Logic Programs”. Machine Learning, 38:1-2, 63–87.

    Article  MATH  Google Scholar 

  35. Lebowitz M. (1986). “Integrated Learning: Controlling Explanation”. Cognitive Science, 10, 219–240.

    Article  Google Scholar 

  36. Michalski R. (1991): “Inferential Learning Theory as a Basis for Multistrategy Task-Adaptive Learning”. In Proc. First Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 3–18.

    Google Scholar 

  37. Michalski R. S. (2000). “Learnable Evolution Model: Evolutionary Processes Guided by Machine Learning”. Machine Learning, 38:1-2, 9–40.

    Article  MATH  Google Scholar 

  38. Mitchell T., Keller R.M., Kedar-Cabelli S. (1986): “Explanation-Based Generalization: A Unifying View”. Machine Learning, 1, 47–80.

    Google Scholar 

  39. Mitchell T. and Thrun S. (1993). “Explanation Based Learning: A Comparison of Symbolic and Neural Network Approaches”. In Proceedings of the 10 th International Conference in Machine Learning (Amehrst, MA), San Francisco: Morgan Kaufmann, pp. 197–204.

    Google Scholar 

  40. Mooney R.J. and Ourston D. (1991): “A Multistrategy Approach to Theory Refinement”. In Proc. First International Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 115–131.

    Google Scholar 

  41. Morik K. (1991). “Balanced Cooperative Modeling”. In Proc. First Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 65–80.

    Google Scholar 

  42. Morik K., Causse K. and Boswell R. (1991). “A Common Knowledge Representation Integrating Learning Tools”. In Proc. 1st Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 81–96.

    Google Scholar 

  43. Morik K. (1998). “Multistrategy Learning in Intensive Care–Knowledge Discovery for Protocol Development and Control”. In Proc. 4th International Workshop on Multistrategy Learning (Desenzano del Garda, Italy), pp. 21.

    Google Scholar 

  44. Neri F. (2000). “Multiple Representations in Modelling Qualitative Physics Learning”. Machine Learning, 38:1-2, 181–211.

    Article  Google Scholar 

  45. Pazzani M.J. (1988). “Integrating explanation-based and empirical learning methods in OCCAM”. In Proc. of the Third European Working Session on Learning (Glasgow, UK), pp.147–165.

    Google Scholar 

  46. Pazzani M. and Kibler D. (1992). “The Utility of Knowledge in Inductive Learning”. Machine Learning, 9, 57–94.

    Google Scholar 

  47. Plaza E. and J.L. Arcos (1993). “Reflection and Analogy in Memory-Based Learning”. In Proc. 2 nd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 42–49.

    Google Scholar 

  48. Saitta L. (1996). “Multistrategy Learning: When, How and Why”. In Proc. 3rd Int. Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 3–9.

    Google Scholar 

  49. Saitta L., Botta M., Neri F. (1993): “Multistrategy Learning and Theory Revision”, Machine Learning, 11, 153–172.

    Google Scholar 

  50. Sebag M. and Rouveirol C. (2000). “Resource-bounded Relational Reasoning: Induction and Deduction Through Stochastic Matching”. Machine Learning, 38:1-2, 41–62.

    Article  MATH  Google Scholar 

  51. Sison R., Numao M. and Shimura M. (2000). “Multistrategy Discovery and Detection of Novice Programmer Errors”. Machine Learning, 38:1-2, 157–180.

    Article  Google Scholar 

  52. Sleeman, D., Rissakis, M., Craw, S., Graner, N., & Sharma, S. (1995). “Consultant-2: Preand post-processing of machine learning applications”. International Journal of Human-Computer Studies, 43, 43–63.

    Article  Google Scholar 

  53. Tchoumatchenko I. and Ganascia J-G. (1994). “A Bayesian Framework to Integrate Symbolic and Neural Learning”. In Proceedings of the 11 th International Conference in Machine Learning (New Brunswick, NJ), San Francisco: Morgan Kaufmann, pp. 302–308.

    Google Scholar 

  54. Tecuci G. (1991). “Learning as Understanding the External World”. In Proc. First International Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 49–64.

    Google Scholar 

  55. Tecuci G. and Duff D. (1993). “Knowledge Base Refinement Through a Supervised Validation of Plausible Reasoning”. In Proc. of 2nd International Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 76–91.

    Google Scholar 

  56. Towell G.G. and Shavlik J.W. (1994). “Knowledge-Based Artificial Neural Networks”. Artificial Intelligence, 70, 119–165.

    Article  MATH  Google Scholar 

  57. Vafaie H. and De Jong K.A. (1991). “Improving the Performance of Rule Induction System Using Genetic Algorithms”. In Proc. of the First International Workshop on Multistrategy Learning (Harpers Ferry, WV), Publ. Center for Artificial Intelligence, George Mason University, pp. 305–315.

    Google Scholar 

  58. Veloso M. and Carbonell J. (1991). “Learning by Analogical Replay in PRODIGY: First Results”. In Proc. European Working Session on Learning (Oporto, Portugal), pp. 375–390.

    Google Scholar 

  59. Venturini G. (1993). “SIA: a Supervised Inductive Algorithm with Genetic Search for Learning Attribute Based Concepts”. In Proceedings of the European Conference on Machine Learning (Vienna, Austria), pp. 280–296.

    Google Scholar 

  60. Zucker J-D. (1998). “Semantic Abstraction for Concept Representation and Learning”. In Proc. 4th International Workshop on Multistrategy Learning (Desenzano del Garda, Italy), pp. 157–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saitta, L. (2001). Integrated Architectures for Machine Learning. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds) Machine Learning and Its Applications. ACAI 1999. Lecture Notes in Computer Science(), vol 2049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44673-7_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44673-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42490-1

  • Online ISBN: 978-3-540-44673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics