Skip to main content

Turing Computability of a Nonlinear Schrödinger Propagator

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2108))

Included in the following conference series:

  • 543 Accesses

Abstract

We study Turing computability of the nonlinear solution operator S of the Cauchy problem for the Schrödinger equation of the form

$$ i\frac{{du}} {{dt}} = - \frac{{d^2 u}} {{dx^2 }} + mu + \left| u \right|^2 u $$

in ℝ.We prove that S is a computable operator from H1(ℝ) to C(ℝH 1(ℝ))with respect to the canonical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrzej Grzegorczyk On the definitions of computable real continuous functions. Fundamenta Mathematicae, 44:61–71, 1957.

    MATH  MathSciNet  Google Scholar 

  2. J. Ginibre and G. Velo On a class of nonlinear Schrödinger equations. i. the Cauchy problem, general case. Journal of Functional Analysis, 32(1):1–32, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ker-I Ko Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston, 1991.

    Google Scholar 

  4. Christoph Kreitz and Klaus Weihrauch Theory of representations. Theoretical Computer Science, 38:35–53, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  5. Marian B. Pour-El and J. Ian Richards Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin, 1989.

    Google Scholar 

  6. Alan M. Turing On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

    MATH  Google Scholar 

  7. Klaus Weihrauch Computable Analysis. Springer, Berlin, 2000.

    MATH  Google Scholar 

  8. Klaus Weihrauch and Ning Zhong The wave propagator is Turing computable. Lecture Notes in Computer Science, Vol.1644, 697–706, 1999.

    Google Scholar 

  9. Ning Zhong and Klaus Weihrauch Computability theory of generalized functions. Informatik Berichte 276, FernUniversität Hagen, Hagen, September 2000.

    Google Scholar 

  10. Klaus Weihrauch and Ning Zhong Turing computability of a nonlinear Schrödinger propagator. Informatik Berichte, FernUniversität Hagen, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weihrauch, K., Zhong, N. (2001). Turing Computability of a Nonlinear Schrödinger Propagator. In: Wang, J. (eds) Computing and Combinatorics. COCOON 2001. Lecture Notes in Computer Science, vol 2108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44679-6_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-44679-6_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42494-9

  • Online ISBN: 978-3-540-44679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics