Skip to main content

Spontaneous Formation of Proto-cells in an Universal Artificial Chemistry on a Planar Graph

  • Conference paper
  • First Online:
Advances in Artificial Life (ECAL 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2159))

Included in the following conference series:

Abstract

An artificial chemistry is embedded in a triangular planar graph, that allows the molecules to act only locally along the edges. We observe the formation of effectively separated components in the graph structure. Those components are kept separated by elastic reactions from molecules generated inside the component itself. We interpret those components as self-maintaining proto-cells and the elastic nodes as their proto-membrane. The possibility for these cells to be autopoietic is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Banzhaf, P. Dittrich, and B. Eller. Selforganization in a system of binary strings with topological interactions. Physica D, 125:85–104, 1999.

    Article  Google Scholar 

  2. J. Breyer, J. Ackermann, and J. McCaskill Evolving reaction-diffusion ecosystems with self-assembling structure in thin films. Artificial Life, 4(1):25–40, 1999.

    Article  Google Scholar 

  3. R. Durrett. The importance of being discrete (and spatial). Theor. Popul. Biol., 46:363–394, 1994.

    Article  MATH  Google Scholar 

  4. J. D. Farmer, S. A. Kauffman, and N. H. Packard Autocatalytic replication of polymers. Physica D, 22:50–67, 1986.

    Article  MathSciNet  Google Scholar 

  5. W. Fontana and L. W. Buss’ The arrival of the fittest’: Toward a theory of biological organization. Bull. Math. Biol., 56:1–64, 1994.

    MATH  Google Scholar 

  6. R. Laing. Some alternative reproductive strategies in artificial molecular machines. J. Theor. Biol., 54:63–84, 1975.

    Article  MathSciNet  Google Scholar 

  7. B. Mayer and S. Rasmussen. Dynamics and simulation of micellar self-reproduction. Int. J. Mod. Phys. C, 11(4):809–826, 2000.

    Article  Google Scholar 

  8. B. Mayer and S Rasmussen. The lattice molecular automaton (LMA): A simulation system for constructive molecular dynamics. Int. J. of Modern Physics C, 9(1):157–177, 1998.

    Article  Google Scholar 

  9. B. McMullin and F. J. Varela Rediscovering computational autopoiesis. In P. Husbands and I. Harvey, editors, Fourth European Conference on Artificial Life, pages 38–47, Cambridge, MA, 1997. MIT Press.

    Google Scholar 

  10. N. Ono and T. Ikegami. Self-maintenance and self-reproduction in an abstract cell model. J. Theor. Biol., 206(2):243–253, 2000.

    Article  Google Scholar 

  11. A. N. Pargellis The spontaneous generation of digital ”life”. Physica D, 91(1-2):86–96, 1996.

    Article  MATH  Google Scholar 

  12. Gheorghe Paun. Computing with membranes. J. of Computer and System Sciences, 61(1):108–143, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. A. Shackleton and C. S. Winter. A computational architecture based on cellular processing. In M. Holcombe and R. Paton, editors, Information Processing in Cells and Tissues, pages 261–272, New York, NY, 1998. Plenum Press.

    Google Scholar 

  14. P. Speroni di Fenizio. Building life without cheating. Master’s thesis, University of Sussex, Falmer, Brighton, UK, 1999.

    Google Scholar 

  15. P. Speroni di Fenizio. A less abstract artficial chemistry. In M. A. Bedau, J. S. McCaskill, N. H. Packard, and S. Rasmussen, editors, Artificial Life VII, pages 49–53, Cambridge, MA, 2000. MIT Press.

    Google Scholar 

  16. P. Speroni di Fenizio and W. Banzhaf. Metabolic and stable organisations. This volume, 2001.

    Google Scholar 

  17. Y. Suzuki and H. Tanaka. Chemical evolution among artificial proto-cells. In M. A. Bedau, J. S. McCaskill, N. H. Packard, and S. Rasmussen, editors, Artificial Life VII, pages 54–63, Cambridge, MA, 2000. MIT Press.

    Google Scholar 

  18. F. J. Varela, H. R. Maturana, and R. Uribe Autopoiesis: The organization of living systems. BioSystems, 5(4):187–196, 1974.

    Article  Google Scholar 

  19. R. J. Wilson. Introduction to Graph Theory. Oliver and Boyd, Edinburgh, 1972.

    MATH  Google Scholar 

  20. K.-P. Zauner and M. Conrad. Conformation-driven computing: Simulating the context-conformation-action loop. Supramolecular Science, 5(5-6):791–794, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

di Fenizio, P.S., Dittrich, P., Banzhaf, W. (2001). Spontaneous Formation of Proto-cells in an Universal Artificial Chemistry on a Planar Graph. In: Kelemen, J., Sosík, P. (eds) Advances in Artificial Life. ECAL 2001. Lecture Notes in Computer Science(), vol 2159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44811-X_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44811-X_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42567-0

  • Online ISBN: 978-3-540-44811-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics