Skip to main content

Optimization of Memory Usage Requirement for a Class of Loops Implementing Multi-dimensional Integrals

  • Conference paper
  • First Online:
Languages and Compilers for Parallel Computing (LCPC 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1863))

Abstract

Multi-dimensional integrals of products of several arrays arise in certain scientific computations. In the context of these integral calculations, this paper addresses a memory usage minimization problem. Based on a framework that models the relationship between loop fusion and memory usage, we propose an algorithm for finding a loop fusion configuration that minimizes memory usage. A practical example shows the performance improvement obtained by our algorithm on an electronic structure computation.

Supported in part by the National Science Foundation under grant DMR-9520319.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Aulbur, Parallel implementation of quasip article calculations of semiconductors and insulators Ph.D. Dissertation, Ohio State University, Columbus, October 1996.

    Google Scholar 

  2. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng, Automatic array alignment in data-parallel programs, 20th Annual ACM SIGACTS/SIGPLAN Symposium on Principles of Programming Languages, New York, pp. 16–28, 1993.

    Google Scholar 

  3. S. Chatterjee, J. R. Gilbert, R. Schreiber, and S.-H. Teng, Optimal evaluation of array expressions on massively parallel machines, ACM TOPLAS, 17(1), pp. 123–156, Jan. 1995.

    Google Scholar 

  4. C. N. Fischer and R. J. LeBlanc Jr, Crafting a compiler, Menlo Park, CA: Benjamin/Cummings, 1991.

    Google Scholar 

  5. L. J. Guibas and D. K. Wyatt, Compilation and Delayed Evaluation in APL, Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona, pp. 1–8, Jan. 1978.

    Google Scholar 

  6. G. Gao, R. Olsen, V. Sarkar, and R. Thekkath, Collective loop fusion for array contraction, Languages and Compilers for Parallel Processing, New Haven, CT, August 1992.

    Google Scholar 

  7. M. S. Hybertsen and S. G. Louie, Electronic correlation in semiconductors and insulators: band gaps and quasiparticle energies, Phys. Rev. B, 34 (1986), pp. 5390.

    Article  Google Scholar 

  8. K. Kennedy and K. S. McKinley, Maximizing loop parallelism and improving data locality via loop fusion and distribution, Languages and Compilers for Parallel Computing, Portland, OR, pp. 301–320, August 1993.

    Google Scholar 

  9. C. Lam, D. Cociorva, G. Baumgartner, and P. Sadayappan, Memory-optimal evaluation of expression trees involving large objects, Technical report no. OSU-CISRC-5/99-TR13, Dept. of Computer and Information Science, The Ohio State University, May 1999.

    Google Scholar 

  10. C. Lam, P. Sadayappan, and R. Wenger, On optimizing a class of multi-dimensional loops with reductions for parallel execution, Parallel Processing Letters, Vol. 7 No. 2, pp. 157–168, 1997.

    Article  MathSciNet  Google Scholar 

  11. C. Lam, P. Sadayappan, and R. Wenger, Optimization of a class of multi-dimensional integrals on parallel machines, Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 1997.

    Google Scholar 

  12. C. Lam, P. Sadayappan, D. Cociorva, M. Alouani, and J. Wilkins, Performance optimization of a class of loops involving sums of products of sparse arrays, Ninth SIAM Conference on Parallel Processing for Scientific Computing, San Antonio, TX, March 1999.

    Google Scholar 

  13. C. Lam, Performance optimization of a class of loops implementing multi-dimensional integrals, Technical report no. OSU-CISRC-8/99-TR22, Dept. of Computer and Information Science, The Ohio State University, Columbus, August 1999.

    Google Scholar 

  14. N. Manjikian and T. S. Abdelrahman, Fusion of Loops for Parallelism and Locality, International Conference on Parallel Processing, pp. II:19–28, Oconomowoc, WI, August 1995.

    Google Scholar 

  15. H. N. Rojas, R. W. Godby, and R. J. Needs, Space-time method for Abinitio calculations of self-energies and dielectric response functions of solids, Phys. Rev. Lett., 74 (1995), pp. 1827.

    Article  Google Scholar 

  16. S. Singhai and K. MacKinley, Loop Fusion for Data Locality and Parallelism, Mid-Atlantic Student Workshop on Programming Languages and Systems, SUNY at New Paltz, April 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lam, CC., Cociorva, D., Baumgartner, G., Sadayappan, P. (2000). Optimization of Memory Usage Requirement for a Class of Loops Implementing Multi-dimensional Integrals. In: Carter, L., Ferrante, J. (eds) Languages and Compilers for Parallel Computing. LCPC 1999. Lecture Notes in Computer Science, vol 1863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44905-1_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44905-1_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67858-8

  • Online ISBN: 978-3-540-44905-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics