Skip to main content

The fidelity of annealing-ligation: A theoretical analysis

  • Conference paper
  • First Online:
DNA Computing (DNA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2054))

Included in the following conference series:

Abstract

Understanding the nature of the error propagation through successive biosteps is critical to modeling the overall fidelity of computational DNA architectures. In this work, the fidelity of the compound biostep annealing-ligation is discussed in the limit of zero dissociation, within the framework of a simple statistical thermodynamic model. For simplicity, a DNA ligase of ideal infidelity is assumed, with its error behavior taken as bounding that of real DNA ligases. The derived expression for the fidelity of annealing-ligation indicates that the error coupling is both strong and dependent on sequence. Estimates of the fidelities of annealing and annealing-ligation have also been calculated for various encodings of Adleman’s graph, assuming a staggered zipper model of duplex formation. Results indicate the necessity of including information regarding the specific free energies and/or occupancies of accessible duplex states, in addition to information based purely on sequence comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Adleman, “Molecular Computation of Solutions to Hard Combinatorial Problems”, Science 266, 1021 (1994).

    Article  Google Scholar 

  2. P. D. Kaplan, G. Cecchi, A. Libchaber, “DNA Based Molecular Computation: Template-Template Interactions in PCR”, DNA Based Computers III, Princeton University, 1999, DIMACS Proc. Series (American Mathematical Society, Providence, RI, 1999).

    Google Scholar 

  3. W. D. Smith, “DNA Computers in Vitro and Vivo”, in R. J. Lipton, E. B. Baum, editors, DNA Based Computers, (American Mathematical Society, Providence, RI, 1996), 121.

    Google Scholar 

  4. M. Amos, A. Gibbons, D. Hodgson, “Error-Resistant Implementation of DNA Computations”, in, L. F. Landweber and E. B. Baum, editors, DNA Based Computers II, (American Mathematical Society, Providence, Rhode Island, 1999), 151.

    Google Scholar 

  5. R. Deaton, M. Garzon, R. E. Murphy, J. A. Rose, D. R. Franceschetti, S. E. Stevens, Jr., “Reliability and Efficiency of a DNA-Based Computation”, Physical Review Letters, 80, 417 (1998).

    Article  Google Scholar 

  6. K. D. James, A. R. Boles, D. Henckel, A. D. Ellington, “The Fidelity of Template-Directed Oligonucleotide Ligation and its Relevance to DNA Computation”, Nucleic Acids Research, 26, 5203 (1998).

    Article  Google Scholar 

  7. Y. Aoi, T. Yoshinobu, K. Tanizawa, H. Iwasaki, “Ligation Errors in DNA Computing”, Biosystems 52, 181 (1999).

    Article  Google Scholar 

  8. T. Brown, D. J. S. Brown, “Purification of Synthetic DNA”, Methods in Enzymology, 211, 20 (1992).

    Article  Google Scholar 

  9. H. Echols and M. F. Goodman, “Fidelity Mechanisms in DNA Replication”, Annu. Rev. Biochem. 60, 477 (1991).

    Article  Google Scholar 

  10. J. A. Rose, R. J. Deaton, D. R. Franceschetti, M. Garzon, S. E. Stevens, Jr., “A Statistical Mechanical Treatment of Error in the Annealing Biostep of DNA Computation”, in W. Banzhaf, et al., editors, Proceedings of the Genetic and Evolutionary Computation Conference, Volume 2, (Morgan Kaufmann, San Francisco, 1999), 1829.

    Google Scholar 

  11. C. R. Cantor, P. R. Schimmel, Biophysical Chemistry, Part III: The Behavior of Biological Macromolecules (Freeman, New York, 1980).

    Google Scholar 

  12. H. T. Allawi, J. SantaLucia, Jr., “Thermodynamics and NMR of Internal GT Mismatches in DNA”, Biochemistry 36, 10581–10594 (1997).

    Article  Google Scholar 

  13. I. R. Lehman, “DNA Ligase: Structure, Mechanism, and Function”, Science, 186, 790 (1974).

    Article  Google Scholar 

  14. V. Sgaramella and H. C. Khorana, “A Further Study of the T4 Ligase-catalyzed Joining of DNA at Base-paired Ends.”, J. Mol. Biol. 72, 493 (1972).

    Article  Google Scholar 

  15. N. P. Higgins and N. R. Cozzarelli, “DNA-joining Enzymes: a review.”, Methods in Enzymology, 68 50 (1979).

    Article  Google Scholar 

  16. C. Goffin, V. Bailly, W. G. Verly, “Nicks 3′ or 5′ to AP Sites or to Mispaired Bases, and One-nucleotide Gaps can be Sealed by T4 DNA Ligase”, Nucleic Acids Research 21, 8755 (1987).

    Article  Google Scholar 

  17. K. Harada and L. E. Orgel, “Unexpected Substate Specificity of T4 DNA Ligase Revealed by in vitro Selection”, Nucleic Acids Research 21, 2287 (1993).

    Article  Google Scholar 

  18. U. Landegren, R. Kaiser, J. Sanders, L. Hood, “A Ligase-Mediated Gene Detection Technique”, Science 241, 1077 (1988).

    Article  Google Scholar 

  19. R. Wiaderdiewicz and A. Ruiz-Carrillo, “Mismatch and Blunt to Protruding-end Joining by DNA Ligases”, Nucleic Acids Research 15, 7831 (1987).

    Article  Google Scholar 

  20. D. Y. Wu and R. B. Wallace, “Specificity of the Nick-Closing Activity of Bacteriophage T4 DNA Ligase”, Gene 76 245 (1989).

    Article  Google Scholar 

  21. S. Shuman, “Vaccinia Virus DNA Ligase: Specificity, Fidelity, and Inhibition”, Biochemistry 34, 16138 (1995).

    Article  Google Scholar 

  22. F. Barany, “Genetic Disease Detection and DNA Amplification using Cloned Thermostable Ligase”, Proc. Natl. Acad. Sci. 88, 189 (1991).

    Article  Google Scholar 

  23. J. Luo, D. E. Bergstrom, F. Barany, “Improving the Fidelity of Thermus thermophilus DNA Ligase”, Nucleic Acids Research 24, 3071 (1996).

    Article  Google Scholar 

  24. C. E. Pritchard and E. M. Southern, “Effects of Base Mismatches on Joining of Short Oligonucleotides by DNA Ligases”, Nucleic Acids Research 25, 3403 (1997).

    Article  Google Scholar 

  25. J. N. Housby and E. M. Southern, “Fidelity of DNA Ligation: a Novel Experimental Approach Based on the Polymerization of Libraries of Oligonucleotides”, Nucleic Acids Research 26, 4259 (1998).

    Article  Google Scholar 

  26. D. D. Lasko, A. E. Tomkinson, T. Lindahl, “Eukaryotic DNA Ligases”, Mutation Research 236, 277 (1990).

    Article  Google Scholar 

  27. A. E. Tomkinson and Z. B. Mackey, “Structure and Function of Mammalian DNA Ligases”, Mutation Research 407, 1 (1998s).

    Article  Google Scholar 

  28. A. E. Tomkinson, N. J. Tappe, E. C. Friedberg, “DNA Ligase I from Saccharomyces cerevisiae: Physical and Biochemical Characterization of the CDC9 Gene Product”, Biochemistry 31, 11762 (1992).

    Article  Google Scholar 

  29. A. S. Benight, J. M. Schurr, P. F. Flynn, B. R. Reid, D. E. Wemmer, “Melting of a Self-Complementary DNA Minicircle”, J Mol Biol 200, 377 (1988).

    Article  Google Scholar 

  30. M. Garzon, R. J. Deaton, J. A. Rose, D. R. Franceschetti, “Soft Molecular Computing”, in E. Winfree and D. Gifford, editors, “Preliminary Proceedings of the Fifth International Meeting on DNA Based Computers”, Massachusetts Institute of Technology, (American Mathematical Society, Providence, Rhode Island, 1999), 89.

    Google Scholar 

  31. L. M. Adleman, personal communication (1999).

    Google Scholar 

  32. B-T Zhang, S-Y Shin, “Molecular Algorithms for Efficient and Reliable DNA Computing”, Proceedings of the Third Annual Genetic Programming Conference, University of Wisconsin at Madison, 1998, (Morgan Kauffman, San Francisco, 1998), 735.

    Google Scholar 

  33. A. S. Benight, R. M. Wartell, D. K. Howell, “Theory agrees with experimental thermal denaturation of short DNA restriction fragments”, Nature 289, 203 (1981).

    Article  Google Scholar 

  34. J. Zhu, R. M. Wartell, “The Effect of Base Sequence on the Stability of RNA and DNA Single Base Bulges”, Biochemistry 38, 15986 (1999).

    Article  Google Scholar 

  35. C. Longfellow, R. Kierzek, D. Turner, “Thermodynamic and Spectroscopic Study of Bulge Loops in Oligoribonucleotides”, Biochemistry 29, 278 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rose, J.A., Deaton, R.J. (2001). The fidelity of annealing-ligation: A theoretical analysis. In: Condon, A., Rozenberg, G. (eds) DNA Computing. DNA 2000. Lecture Notes in Computer Science, vol 2054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44992-2_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-44992-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42076-7

  • Online ISBN: 978-3-540-44992-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics